pytorch: 计算网络模型的计算量(FLOPs)和参数量(Params)

本文介绍如何使用thop模块计算神经网络模型的计算量(FLOPs)及参数量。通过安装thop模块并导入所需库,定义网络模型后,设置输入尺寸即可快速获取模型的FLOPs与参数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算量:
FLOPS,浮点运算次数,指运行一次网络模型需要进行浮点运算的次数。
参数量:
Params,是指网络模型中需要训练的参数总数。

第一步:安装模块(thop)

pip install thop

第二步:计算

import torch
from thop import profile

net = Model()  # 定义好的网络模型
inputs = torch.randn(1, 3, 112, 112)
flops, params = profile(net, (inputs,))
print('flops: ', flops, 'params: ', params)

注意:

  • 输入input的第一维度是批量(batch size),批量的大小不回影响参数量, 计算量是batch_size=1的倍数
  • profile(net, (inputs,))的 (inputs,)中必须加上逗号,否者会报错
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值