这篇文章是关于物体识别领域的一篇综述类文章,首先由于目标检测是在计算机视觉和数字图像处理的热门方向,在诸多领域得到广泛应用。特别地阅读总结下这篇文章;二来,之所以选择这篇文章,是由于它的时间较近较新并且是由IEEE Fellow发表的文章,可见其权威性。
除此之外,还有三篇综述论文是和此篇一起找到的发表日期相近,其中有些内容也穿插在里面。

文章结构框架,主要内容

目标检测是计算机视觉和数字图像处理的一个热门方向,目标检测也就成为了近年来理论和应用的研究热点,直观的从数据上看.
下图是作者在谷歌学术检索目标检测相关关键字返回的历年文献数量,可见该领域20年来越来越受到学术界的关注。2018年有将近1200篇相关文献发表。


本文详述了目标检测在计算机视觉中的重要地位,分析了深度学习前后的检测流程,强调了深度学习对目标检测的变革,尤其是Faster R-CNN和SSD等里程碑算法的影响,并探讨了一步法和两步法检测器的效率与精度权衡。
最低0.47元/天 解锁文章
913

被折叠的 条评论
为什么被折叠?



