论文阅读-End-to-end Aspect-based Sentiment Analysiswith Combinatory Categorial Gramma

论文来自2023Findings,原文:End-to-end Aspect-based Sentiment Analysis with Combinatory Categorial Grammar - ACL Anthology

摘要:(来自原文)

现存问题:之前的方法使用advanced text encoders来提取context information并使用syntactic information,例如 输入句子的dependency structure。但是,由于dependency structure并不用来提供文本semantic information,所以需要改进。

本文方法:考虑到combinatory categorial grammar(CCG)可以表达句子的both syntactic and semantic information,本文使用CCG supertags来解决EASA(End-to-end Aspect Sentiment Analysis)问题。

提出一个CCG supertag解码过程,以此来学习CCG supertag携带的syntactic and semantic information,并使用该信息来引导对input words的attention,从而识别EASA的重要contextual information。

此外,利用gate mechanism将weighted contextual information加入到EASA主体的解码过程中。

我的关注点

1.Combinatory Categorial Grammar (CCG)

CCG介绍:

jGCCCCG超级标记_自然语言处理CS的博客-CSDN博客

CCG提供了一个系统严谨的方式来分析句子的syntactic和semantic结构,是建立准确和高效的NLP系统的关键。它还允许syntactic和semantic信息的整合,这对语言理解至关重要。

相比较常用的phrase structure grammar和dependency grammar,CCG的优势在于:

1.CCG是词汇化的,words和phrases的syntactic类别不仅仅由他们的syntactic function决定,也由他们本身的意义和用法决定。

2.CCG可以通过组合规则处理长距离依赖,特别是使用type raising时,

type raising:改变单词或短语的syntactic categories以表示句子的复杂syntactic结构的过程,从而为EASA捕获重要的上下文信息。

2.Joint-label Approaches for EASA

joint label包括两部分:

1.关于aspect term边界的BIO标签

2.这个aspect的sentiment polarity(positive, negative, neutral)

3.The Approach

作者在介绍方法时,首先明确了每个部分及其功能,让人一目了然,值得在写作时借鉴:

方法包含四部分:

1.预测EASA的backbone model

2.学习syntactic和semantic information的supertag decoding process

3.权衡不同上下文信息的attention module

4.平衡backbone model和attention module的gate mechanism

Loss训练包括两部分:预测的joint labels和gold standard;预测的supertags和从CCG supertagger 获得的silver standard。

4.Super Decoding

最直接的方法:使用现成的CCG supertagger给输入的句子打标签,之后,通过将supertags作为额外的word-level特征,和输入的单词相连接。

缺点是:效率不高,特别是要处理的数据相对较大时。

本文的方法:使用额外的CCG supertag decoding过程来学习CCG information,之后,使用CCG information,通过一个attention mechanism over all input words来指导EASA。

5.Super-driven Attentions

这个Attention的名字起的很不错,可以借鉴

6.The Gate Mechanism

原因:在不同的上下文中,获得的contextual information对于EASA任务的贡献可能不同,因此使用gate module权衡在不同上下文中的information。因此,为了使用semantic information提高EASA的能力,本文提出了一个gate module将这些information聚合到backbone NER model中。

reset gate:

 并使用以下公式来平衡backbone model和attention module之间的信息。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Bert是一种在自然语言处理中被广泛使用的模型,其在各种任务中表现出了出色的性能。然而,对于方面级情感分析,Bert并不直接适用。因此,需要对Bert进行利用,并通过修改和扩展来适应这一任务。 端到端(end-to-end)的方面级情感分析是指通过一个模型直接从文本中提取方面和情感信息。为了利用Bert进行端到端的方面级情感分析,首先需要对数据进行预处理,并将其转换成Bert模型所接受的输入格式。这包括将文本分段、添加特殊标记以及填充序列等操作。 在Bert模型的基础上,需要添加相关的层来实现方面级情感分析。一种常见的方法是利用注意力机制来捕获方面词与其他词之间的关系。通过计算不同词之间的注意力权重,可以将方面词的相关信息传递给其他词,从而更好地理解整个文本。另外,也可以添加一些分类层来预测每个方面的情感。 为了更好地利用Bert,还可以使用领域特定的语料库来进行预训练。通过在大规模的语料库上进行预训练,模型可以更好地理解特定领域的文本,并提升方面级情感分析的性能。 此外,还可以通过调整Bert模型的超参数来进一步改善性能。例如,可以调整学习率、批大小和训练周期等超参数,以获得更好的结果。 总之,“exploiting bert for end-to-end aspect-based sentiment analysis”意味着通过对Bert进行修改和扩展,将其应用于端到端的方面级情感分析任务中,以提升模型的性能和效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值