几何光学学习笔记(12)- 3.9几种典型系统的理想光学系统性质& 3.10 矩阵运算在几何光学中的应用

本文详细介绍了几何光学中的望远镜、显微镜和照相物镜系统的理想光学性质。望远系统包括伽利略望远镜和开普勒望远镜,其特点为物方和像方焦距无限大,垂轴放大率和轴向放大率与物距无关。显微镜系统由短焦距物镜和目镜组成,成倒立像,垂轴放大率为负。照相物镜则在无限远成像时放大率为0。此外,还讨论了矩阵运算在几何光学中的应用,如近轴光的矩阵表示、物像矩阵等,用于描述光线在光学系统中的传播变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.9几种典型系统的理想光学系统性质

1.望远镜系统

平行于光轴入射到光学系统中的光线,因系统结构不同,其共辄光线可以和光轴相交,也可以平行于光轴。前一种为有限焦距系统,后一种为望远系统(无焦系统)。望远系统是光组组合的重要情况之一,它由两个光组组合而成,其重要特点是光学间隔为零。由于其光学间隔为零,所以有许多奇妙的特点。
在这里插入图片描述其物方焦距和像方焦距为无限大。即平行光射入平行光射出,主点位置和焦点位置均在无限远处。望远系统的焦距为无限大,但放大率为有限值,且不因物体位置而异。

系统总长为 f 1 ′ − f 2 f'_{1}-f_{2} f1f2

系统的物像公式:
x 2 ′ = f 2 f 2 ′ f 1 f 1 ′ x 1 x'_{2}={{f_{2}f'_{2}}\over {f_{1}f'_{1}}}x_{1} x2=f1f1f2f2x1

垂轴放大率:
b = b 1 b 2 = f 2 ′ f 1 ′ b=b_{1}b_{2}={{f'_{2}}\over {f'_{1}}} b=b1b2=f1f2
轴向放大率:
a = f 2 f 2 ′ f 1 f 1 ′ a={{f_{2}f'_{2}}\over {f_{1}f'_{1}}} a=f1f1f2f2
角放大率:
g = t a n U ′ t a n U = f 1 f 2 ′ g={{tanU'}\over {tan U}}={{f_{1}}\over {f'_{2}}} g=tanUtanU=f2f1
由此可见,一般光学系统中的各放大率之间的关系在望远系统中同样成立。望远系统有两种最基本形式,一种称为伽利略望远镜革统,用正透镜作为物镜,以负透镜作为目镜,其产生正立虚像,系统中没有实像,不能装瞄准用卦划板 ; 另一种称为开普勒望远镜系统,物镜和目镜均为正透镜,其产生倒立虚像,由于有中间实像,可以安装瞄准用分划板。
在这里插入图片描述一个望远系统与一望远系统组合,仍为望远系统。望远系统加一个有限焦距的系统,组合成为一个有限焦距系统,其像焦点就是所加系统的像方焦点,易于证明 h2/ h1, 为望远镜的垂轴倍率倒数1/b1。在一个有限焦距的光学系统之前加一个角放大率为 g 的望远系统时,整个系统的焦距为原有限焦距系统的焦距的g倍。
在这里插入图片描述

2.显微镜系统

显微镜系统由焦距很短的物镜和目镜组成,在物镜后焦F’1到目镜前焦点F之间有着较大的光学间隔 D。

在这里插入图片描述 f ′ = − f 1 ′ f 2 ′ D , f ′ = f 1 f 2 D f'=-{{f'_{1}f'_{2}}\over {D}},f'={f_{1}f_{2}\over {D}} f=Df1f2,f=Df1f2
像方焦距f’为负,物方焦距f为正。

垂轴放大率
b = x 1 ′ x 2 ′ f 1 ′ f 2 ′ b={{x'_{1}x'_{2}}\over {f'_{1}f'_{2}}} b=f1f2x1x2
b为负值,显微镜系统成倒像。

轴向放大率
a = x 1 ′ x 2 ′ f 1 ′ f 2 ′ a={{x'_{1}x'_{2}}\over {f'_{1}f'_{2}}} a=f1f2x1x2

角放大率
g = f 1 ′ f 2 ′ x 1 ′ x 2 ′ g={{f'_{1}f'_{2}}\over{x'_{1}x'_{2}}} g=x1x2f1f2

3.照相物镜系统

照相物镜一脚才无限远成像,此时垂轴放大率、轴向放大率和角放大率分别:b=0,a=0,g=∞。实际照相物镜是在有限距离应用,随物距的改变,像平面相对于物镜的距离也改变,一般移动物镜,在规定像平面上成清晰像,即所谓调焦。

在这里插入图片描述
由曲线可以看出:
其一,由于牛顿放大率公式 b=-f/x , 且照相时必须成实像在胶片上,所以永远成倒像。随着物距
的减小,即 x/f 的减小, b 增大。在x=f处为 b= -1 的倒立实像。其二,当物距一定时,照相物镜
更换为长焦距时,其垂轴放大率 b 也增大。

3.10 矩阵运算在几何光学中的应用(了解)

1.近轴光的矩阵表示

在矩阵运算中,确定一条光线的雪间位置用该光线和一己知参考面上交点的坐标(0 , y , z)及该光线的三个方向余弦和所在空间折射率的乘积na,nb和ng来表示(8个还是9个变量?)。对于子午面内的光线,只要用两个参量就可以了,即光线在参考面上的交点高度 y 及该光线和 y 坐标轴夹角的余弦与折射率的乘积 ncosV。
在这里插入图片描述
折射矩阵:
参考面可以是折射面的近轴部分,也可以是物、像面或任一指定平面。光线通过参考面之后,其参量发生变化,湖中变化可以用一个矩阵来描述。例如光线经过一个折射面,其方向变化可用折射矩阵来表示。

过渡矩阵:
光线由一个参考面射向另一个参考面,光线在后一个参考面上的坐标发生变化,可用一个过渡矩
阵来表示。

传递矩阵:
光线经过光学系统可用一系列的折射矩阵和过渡矩阵的乘积来表示,该乘积即为传递矩阵。

2.物像矩阵

光学系统对物体成像是把光线在物面处的坐标变换为像面处的坐标。这个变换由一个物像矩阵来
完成。

3.用高斯常数表示系统的基点位置和焦距

4.薄透镜系统的矩阵运算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carifee.

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值