几何光学学习笔记(10)- 3.4 理想光学系统的放大率

本文详细介绍了理想光学系统的三种放大率——垂轴放大率、轴向放大率和角放大率,及其相互关系。在光学系统中,垂轴放大率、轴向放大率和角放大率分别描述了像的大小、位置和角度变化。通过分析主点、焦点和节点处的放大率,揭示了它们在不同位置的特性,例如在主点处放大率为1,在焦点处轴向放大率趋于无穷,角放大率为0。此外,还讨论了放大率与介质折射率的关系以及如何影响成像光束的宽度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.垂轴放大率b

b = − x ′ f ′ b={-{x'\over f'}} b=fx
b = l ′ l b={l'\over l} b=ll
b = y k ′ y 1 = y 1 ′ y 1 ⋅ y 2 ′ y 2 ⋅ ⋅ ⋅ ⋅ ⋅ y k ′ y k = b 1 b 2 ⋅ ⋅ ⋅ b k b={{y'_{k}}\over{y_{1}}}={{y'_{1}}\over{y_{1}}}·{{y'_{2}}\over{y_{2}}}·····{{y'_{k}}\over{y_{k}}}=b_{1}b_{2}···b_{k} b=y1yk=y1y1y2y2ykyk=b1b2bk

2.轴向放大率a

沿轴的微小线段:
a = b 2 n ′ n a=b^2 {n'\over n} a=b2nn
沿轴的有限线段:
a ˉ = b 1 b 2 n ′ n \bar a=b_{1}b_{2} {n'\over n} aˉ=b1b2nn

3.角放大率g

g = 1 b n n ′ g= {1\over b}{n\over n'} g=b1nn

若光学系统处于同一种介质中,有g = 1/ b。 此式表明,同一对共辄平面的角放大率和垂轴放大率互为倒数。若垂轴放大率 Ibl >1,则像方成像光束比物方光束细,这是因为角放大率g <1 的缘故。反之,缩小像是以较宽的像方光束形成的。

4.三种放大率之间的关系

a g = b ag=b ag=b

5.主点、焦点、节点处的放大率

(1)主点处的放大率
b H = + 1 , a H = n ′ n , g H = n n ′ b_{H}=+1,a_{H}={n'\over n},g_{H}={n \over n'} bH=+1,aH=nn,gH=nn
(2)焦点处的放大率
b F = − f x = − x ′ f ′ = ± ∞ a F = ∞ g F = 0 b_{F}=-{f\over x}=-{x' \over f'}= ±∞\\ a_{F}=∞\\ g_{F}=0 bF=xf=fx=±aF=gF=0
(3)节点处的放大率
g J = ± 1 , b J = n n ′ , a J = n n ′ g_{J}=±1,b_{J}={n \over n'},a_{J}={n \over n'} gJ=±1bJ=nn,aJ=nn

对于角放大率g 为 -1 的一对共领点,称为反节点,当 g =-1时,可以证明:
b J = − n n ′ , a J = n n ′ b_{J}={-{n \over n'}},a_{J}={n \over n'} bJ=nn,aJ=nn

若光学系统处于同一种介质中,则b=-I, a=l, g=-1 。

光学系统中几对特殊共轭点处的放大率:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carifee.

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值