几何光学学习笔记(16)- 4.5 光楔

几何光学学习笔记(16)- 4.5 光楔

4.5 光楔

折射角 a 很小的棱镜称为光楔,它在光学仪器中有很多用途。折射棱镜的公式用于光楔时可以简化。光线的入射角具有一定大小时,因α 角很小,可近似地认为是平行平板。

在这里插入图片描述
δ = α ( n c o s I 1 ′ c o s I 1 − 1 ) \delta = \alpha({{ncosI'_{1}}\over{cosI_{1}}}-1) δ=α(cosI1ncosI11)

I 1 ′ 和 I 1 I'_{1}和I_{1} I1I1很小时,上式中的余弦值可以用1代替。
δ = α ( n − 1 ) \delta = \alpha(n-1) δ=α(n1)
此式表明,当光线垂直或近于垂直射入光棋时,如图(b)所示,其所产生的偏角仅取决于光楔的折射角和折射率的大小。

1.共轴双光楔

共轴双光楔在光学仪器中,常把两块相同的光棋组合在一起相对转动,可以产生不同大小的偏向角,如图所示。两光模间有一微小空气间隙,相邻工作面平行,并可绕其公共法线相对转动。图 (a) 表示两光楔主截面平行,两折射角朝向一方,将产生最大的总偏向角(为两光模产生偏向角之和)。图(b) 为两光楔相对转动 180°,两主截面仍平行,但折射角方向相反,显然,这个系统相当于一个平行平板,偏向角为零。图(c) 表示两光楔相对转动 180°,产生与图(a)相反的总偏向角。

可以利用两个光模之间间隙的变化,以改变出射光线的平移量
在这里插入图片描述 Δ y = Δ z d = Δ z ( n − 1 ) α \Delta y =\Delta zd= \Delta z(n-1)\alpha Δy=Δzd=Δz(n1)α

2.偏轴双光楔

当两主截面不平行或相对转动任意角习2j时,则组合光模的总偏角为:
δ = 2 α ( n − 1 ) c o s j \delta = 2\alpha(n-1)cosj δ=2α(n1)cosj
这种双光棋可以把光线的小偏向角转换成为两个光模的相对转角。因此,在光学仪器中常用它来补偿和测量小角度误差,即把小角度误差转换成为两个光模间的很大的相对转角,从而可以读出小角度误差。

共轴双光楔间有一微小空气间隙,如果用于对激光束偏转,因激光束能量集中,会产生多次反射和折射(类似于腔体作用),使光学系统中产生大量杂散光,为此可采用偏轴双光楔结构。
用于激光系统中的光楔

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carifee.

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值