点击上方“码农突围”,马上关注
这里是码农充电第一站,回复“666”,获取一份专属大礼包
真爱,请设置“星标”或点个“在看”
来源:知乎
作者:Orangrass
链接:https://zhuanlan.zhihu.com/p/54505069
前言
图卷积网络Graph Convolutional Network,简称GCN,最近两年大热,取得不少进展。
最近,清华大学孙茂松教授组在 arXiv 发布了论文 Graph Neural Networks: A Review of Methods and Applications ,作者对现有的 GNN 模型做了详尽且全面的综述。GCN就是GNN中的一种重要的分支。
但是对于GCN的萌新,看着这篇综述可能还是会困难重重、不知所措。
写这篇文章的目的,就是帮助萌新们掌握GCN的重要概念和理论,走出新手村。
什么是Convolution
Convolution的数学定义是:
一般称g为作用在f上的filter或kernel
一维的卷积示意图如下:
大家常见的CNN二维卷积示意图如下:
在图像里面卷积的概念很直接,因为像素点的排列顺序有明确的上下左右的位置关系。
那在抽象的graph里面卷积该怎么做呢?
比如这个社交网络抽象出来的graph里面,有的社交vip会关联上万的节点,这些节点没有空间上的位置关系,也就没办法通过上面给出的传统卷积公式进行计算。
Fourier变换
为了解决graph上卷积计算的问题,我们给出第二个装备--Fourier变换。
先上结论,根据卷积定理,卷积公式还可以写成:
这样我们只需要定义graph上的fourier变换,就可以定义出graph上的convolution变换。
好的,先来看下Fourier变换的定义:
Inverse Fourier变换则是:
根据Fourier变换及其逆变换的定义,下面我们来证明一下卷积定理
我们定义 是 和 的卷积,那么
带入
最后对等式的两边同时作用
Laplacian算子
一波未平,又来一个陌生的概念。
不要担心,这是出新手村之前的最后一件装备了。
一阶导数定义为:
laplacian算子简单的来说就是二阶导数:
那在graph上,我们可以定义一阶导数为:
其中y是x的邻居节点
那么对应的Laplacian算子可以定义为:
定义
定义
那么图上的Laplacian算子可以写成
标准化之后得到
定义Laplacian算子的目的是为了找到Fourier变换的基
比如传统Fourier变换的基
那么图上的Fourier基就是
其中
那么Graph Fourier变换可以定义为
其中
那么我们可以用矩阵形式来表示Graph Fourier变换
类似的Inverse Graph Fourier变换定义为
它的矩阵形式表达为
推导Graph Convolution
走到这里,我们已经获得了新手村的所有装备,下面就开始推导GCN的公式。还记得我们之前提到的先上卷积定理吗?
那么图的卷积公式可以表示为:
作为图卷积的filter函数
作用一次laplacian矩阵相当于在图上传播了一次邻居节点。进一步我们可以把
改写上面的图卷积公式,我们就可以得到论文SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS(链接:https://arxiv.org/pdf/1609.02907.pdf)的公式(3)
可以看到这个卷积计算的复杂度是非常高的,涉及到求laplacian矩阵的特征向量,和大量的矩阵计算。下面我们考虑对filter函数做近似,目标是省去特征向量的求解
其中
因为
所以上面filter函数可以写成
设定
令
那么再加上激活层,我们就可以得到最终的GCN公式:
---END---
重磅!码农突围-技术交流群已成立
扫码可添加码农突围助手,可申请加入码农突围大群和细分方向群,细分方向已涵盖:Java、Python、机器学习、大数据、人工智能等群。
一定要备注:开发方向+地点+学校/公司+昵称(如Java开发+上海+拼夕夕+猴子),根据格式备注,可更快被通过且邀请进群
▲长按加群
如有收获,点个在看,诚挚感谢