图卷积网络(GCN)新手村完全指南

点击上方“码农突围”,马上关注

这里是码农充电第一站,回复“666”,获取一份专属大礼包

真爱,请设置“星标”或点个“在看”

来源:知乎

作者:Orangrass

链接:https://zhuanlan.zhihu.com/p/54505069

前言

图卷积网络Graph Convolutional Network,简称GCN,最近两年大热,取得不少进展。

最近,清华大学孙茂松教授组在 arXiv 发布了论文 Graph Neural Networks: A Review of Methods and Applications ,作者对现有的 GNN 模型做了详尽且全面的综述。GCN就是GNN中的一种重要的分支。

但是对于GCN的萌新,看着这篇综述可能还是会困难重重、不知所措。

写这篇文章的目的,就是帮助萌新们掌握GCN的重要概念和理论,走出新手村。

什么是Convolution

Convolution的数学定义是:

一般称g为作用在f上的filter或kernel

一维的卷积示意图如下:

大家常见的CNN二维卷积示意图如下:

在图像里面卷积的概念很直接,因为像素点的排列顺序有明确的上下左右的位置关系。

那在抽象的graph里面卷积该怎么做呢?

比如这个社交网络抽象出来的graph里面,有的社交vip会关联上万的节点,这些节点没有空间上的位置关系,也就没办法通过上面给出的传统卷积公式进行计算。

Fourier变换

为了解决graph上卷积计算的问题,我们给出第二个装备--Fourier变换。

先上结论,根据卷积定理,卷积公式还可以写成:

这样我们只需要定义graph上的fourier变换,就可以定义出graph上的convolution变换。

好的,先来看下Fourier变换的定义:

Inverse Fourier变换则是:

根据Fourier变换及其逆变换的定义,下面我们来证明一下卷积定理

我们定义     是     和     的卷积,那么


   

带入     ;    
   

最后对等式的两边同时作用     ,得到

Laplacian算子


一波未平,又来一个陌生的概念。

不要担心,这是出新手村之前的最后一件装备了。

一阶导数定义为:

laplacian算子简单的来说就是二阶导数:

那在graph上,我们可以定义一阶导数为:

其中y是x的邻居节点

那么对应的Laplacian算子可以定义为:
 

定义     是    的度数矩阵(degree matrix)

定义     为    邻接矩阵(adjacency matrix)

那么图上的Laplacian算子可以写成

标准化之后得到    

定义Laplacian算子的目的是为了找到Fourier变换的基

比如传统Fourier变换的基     就是Laplacian算法的一组特征向量

  ,     是一个常数

那么图上的Fourier基就是     矩阵的n个特征向量     ,     可以分解为

其中     是特征值组成的对角矩阵

传统 变换 变换 变换基 变换基 维度 点的个数  

那么Graph Fourier变换可以定义为

其中     可以看做是作用在第     个点上的signal,用向量  

  来表示

  是 的对偶向量,     是矩阵     的第     行,    是矩阵     的第     行。

那么我们可以用矩阵形式来表示Graph Fourier变换

类似的Inverse Graph Fourier变换定义为

它的矩阵形式表达为

推导Graph Convolution

走到这里,我们已经获得了新手村的所有装备,下面就开始推导GCN的公式。还记得我们之前提到的先上卷积定理吗?

那么图的卷积公式可以表示为:

作为图卷积的filter函数     ,我们希望具有很好的局部性。就像CNN模型里的filter一样,只影响到一个像素附近的像素。那么我们可以把     定义成一个laplacian矩阵的函数    

作用一次laplacian矩阵相当于在图上传播了一次邻居节点。进一步我们可以把     看做是     一个laplacian特征值的函数。

改写上面的图卷积公式,我们就可以得到论文SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS(链接:https://arxiv.org/pdf/1609.02907.pdf)的公式(3)

可以看到这个卷积计算的复杂度是非常高的,涉及到求laplacian矩阵的特征向量,和大量的矩阵计算。下面我们考虑对filter函数做近似,目标是省去特征向量的求解

其中     是Chebyshev多项式。这里可以把简单     简单看成是     的多项式。

因为

所以上面filter函数可以写成     的函数

设定    那卷积公式可以简化为

令     ,    

那么再加上激活层,我们就可以得到最终的GCN公式:

---END---

重磅!码农突围-技术交流群已成立

扫码可添加码农突围助手,可申请加入码农突围大群和细分方向群,细分方向已涵盖:Java、Python、机器学习、大数据、人工智能等群。

一定要备注:开发方向+地点+学校/公司+昵称(如Java开发+上海+拼夕夕+猴子),根据格式备注,可更快被通过且邀请进群

▲长按加群


如有收获,点个在看,诚挚感谢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值