利用Colmap进行图片集的三维重建(mac,windows)

1.新建项目

2.创建数据库(一般建在图片文件夹那层),选择要重建的图片所在的文件夹,点击保存

3.可选择自动重建,全程自动重建进行稀疏匹配和密集匹配(可选项)并生成稀疏点云和密集点云(可选项)

如下,如果要求更高精度,则勾选dense model,不建议mac用户勾选。

第一个箭头选择图片文件夹所在文件夹,第二个选择图片所在文件夹。

点击run开始自动重建。

优点:全程自动,省事。

缺点:全部步骤一次进行,耗时长,如果闪退基本重头开始(也可备份找回,具体方法自行查找)

或者可选择手动重建,步骤如下:

第一步选择feature extraction,特征提取

第二步Feature matching,特征匹配

第三步start reconstrucion,开始重建。此过程动态可视。重建完生成sparce model(稀疏模型,包括稀疏点云等文件)到这一步就完成稀疏重建了。下一步是密集重建,可选可不选。

选择dense reconstruction,密集重建。(注意:这一步耗费时间较多,是前面的几倍)

先选择生成密集重建模型的文件夹(一般自己新建一个并放在图片文件夹所在那一层),接着从左到右选择,逐步生成文件。

images是图片文件夹,sparse是上一步我们生成的稀疏模型,dense是我们这一步生成的密集模型,包含文件如图所示。stereo包含了深度图等文件,fused.ply即位点云文件,可以在colmap的import model中打开并显示,meshed-poisson.ply是我们上副图第五个箭头选择而生成的柏松三维重建模型,meshed-delaunay.ply我们这里没有,因为没选择。对于这两个meshed文件,在colmap中无法打开,必须通过其他软件如meshlab打开查看并编辑,poisson和delaunay只是两种生成三维模型的不同方法,如果要选,二者选其一即可。如果不选,可以在meshlab中导入fused.ply也能生成三维模型(比colmap快)。

效果如下(meshlab)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值