计划评审方法与关键路线法

科技就是战斗力,数学就是战斗力.

model:
    sets:
        events/1..8/:x;
        operate(events,events)/
            1,2 1,3 1,4 3,4 2,5 3,5 4,6 5,6 5,8 5,7 6,7 7,8 6,8 
            /:s,t;
    endsets
    data:
        t = 5 10 11 4 4 0 15 21 35 25 0 15 20;
    enddata
    min = @sum(events:x);
    !min = x(8)-x(1);
    @for(operate(i,j):s(i,j)=x(j)-x(i)-t(i,j));
    



end
model:
    sets:
        events/1..8/:x;
        operate(events,events)/
            1,2 1,3 1,4 3,4 2,5 3,5 4,6 5,6 5,8 5,7 6,7 7,8 6,8 
            /:s,t,m,c,y;
    endsets

    data:
        t = 5 10    11  4 4   0  15 21  35  25  0   15  20;
        m = 5 8     8   4 3   0  15 16  30  22  0   12  16;
        c = 0 700   400 0 450 0  0  600 500 300 0   400 500;
        d = 49;
    enddata

    min = 0.2*mincost+0.8*sumx;
    mincost = @sum(operate:c*y);
    sumx = @sum(events:x);
    @for(operate(i,j):s(i,j)=x(j)-x(i)+y(i,j)-t(i,j));
    n = @size(events);
    x(n)-x(1)<=d;
    @for(operate:@bnd(0,y,t-m));
    
end
model:
    sets:
        events/1..8/:d;
        operate(events,events)/
            1,2 1,3 1,4 3,4 2,5 3,5 4,6 5,6 5,8 5,7 6,7 7,8 6,8 
            /:a,m,b,et,dt,x;
    endsets
    data:
        a = 3  8  8   2  3  0  8  18  26  18  0    12   11;
        m = 5  9  11  4  4  0  16 20  33  25  0    15   21;
        b = 7  16 14  6  5  0  18 28  52  32  0    18   25;
        d = 1  0  0   0  0  0  0  -1;
        limit = 52;  
    enddata
    @for(operate:
        et = (a+4*m+b)/6;
        dt = (b-a)^2/36);
    max = Tbar;
    Tbar = @sum(operate:et*x);
    @for(events(i):
        @sum(operate(i,j):x(i,j)-@sum(operate(j,i):x(j,i)))=d(i););
    S^2 = @sum(operate:dt*x);
    p = @psn((limit-Tbar)/S);
    @psn((days-Tbar)/S) = 0.95;
end
model:
    sets:
        events/1..8/:d;
        operate(events,events)/
            1,2 1,3 1,4 3,4 2,5 3,5 4,6 5,6 5,8 5,7 6,7 7,8 6,8 /:a,m,b,et,dt,x;
    endsets
    data:
        a = 3  8  8   2  3  0  8  18  26  18  0    12   11;
        m = 5  9  11  4  4  0  16 20  33  25  0    15   21;
        b = 7  16 14  6  5  0  18 28  52  32  0    18   25;
        d = 1  0  0   0  0  0  0  -1;
        limit = 52;  
    enddata
    @for(operate:
        et = (a+4*m+b)/6;
        dt = (b-a)^2/36;
    );
    max = Tbar;
    Tbar = @sum(operate:et*x);
    @for(events(i):
        @sum(operate(i,j):x(i,j))-@sum(operate(j,i):x(j,i))=d(i);
    );
    S^2 = @sum(operate:dt*x);
    p = @psn((limit-Tbar)/S);
    @psn((days-Tbar)/S) = 0.95;
end
内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值