专业词汇
- Absorption cross section
- Accelerator
- Antenna
- Atom
- Battery
- Biot-Savart law
- Black body radiation
- Bohr model
- Braids
- Brightness temperature
- Capacitor
- Charge density
- Classical electron radius
- Conductivity
- Correspondence principle
- Coulomb's constant
- Current density
- Dipole moment
- Dielectric constant
- Disk antenna
- Eddington limit
- Electron
- Electron configuration
- Electron cloud
- Elementary charge
- Emission line spectra
- Energy bands
- Excitation spectrum
- Faraday’s law of induction
- Field line
- Fine structure constant
- Flux
- Frequency
- Fresnel coefficients
- Gaussian optics
- Geometric optical depth
- Gravitational redshift
- Hall effect
- Harmonic oscillators
- Heart theorem
- Hertz vector
- Highly excited atom (Rydberg atoms)
- Inductance
- Infrared catastrophe
- Landau level
- Laser cooling
- Least action principle
- Light-emitting diode (LED)
- Local thermodynamic equilibrium (LTE)
- Longitudinal mode
- Lowest-order term
- Macroscopically large systems
- Magentic monopoles
- Matveev–Salam mode matching condition
- Microstrip transmission line
- Modal method
- Multielectron atoms (Hund’s rule)
- Nanophysics
- Natural units
- Niobium
- Oersted’s discovery
- Parallel plate capacitors
- Pauli exclusion principle
- Permittivity
- Periodic boundary conditions
- Phase angle difference
- Physical optics
- Planck constant
- Poynting vector
- Quasimonochromatic beam profile
- Quantization of charge
- Rayleigh criterion
- Radiation reaction
- Random walk problem
- Reflection coefficient
- Relativistic kinetic energy
专业表达
- The Coulomb gauge ensures the elimination of scalar potential in electric fields while preserving its importance in magnetostatics.
- Ampere's law states that the circulation of the magnetic field around any closed loop depends on the net current enclosed inside it.
- The Biot-Savart law mathematically relates the distribution of magnetic dipoles to the resulting magnetic field.
- Gauss's law constrains the divergence of the electric field to be proportional to the local density of charge sources.
- Faraday's law establishes the relationship between changing magnetic flux and induced emf (electromotive force) in neighboring coils or circuits.
- Inductance characterizes the amount of opposition that an alternating current encounters in a circuit element, such as inductors or transformers.
- Snell's law determines the direction of propagation of light upon entering another transparent medium based on indices of refraction.
- Total internal reflection manifests itself whenever the incident ray strikes one surface at less than the critical angle required for transmission, making fiber optics possible.
- Geometric optics simplifies optical problems under the assumption of wavelength much smaller compared to the size of objects or lens curvature radii.
- Optical diffraction effects arise from Huygens-Fresnel principle applying a wave interpretation to these phenomena.
- Polarization refers to the orientation state of electromagnetic waves, influencing absorption, scattering, and measurement.
- Interference patterns appear upon superposition of multiple coherent wavefronts, highlighting constructive and destructive regions of intensity variation.
- Diffraction grating orders interferometer outputs depending on angles between incoming parallel beams and groove spacing, producing discrete spectral lines.
- Michelson Morley experiment sought out but failed to find existence of the hypothetical luminiferous ether wind thought t
- "The Lorentz transformation is central to understanding how time dilation and length contraction occur for objects moving at relativistic speeds."
- "Maxwell's equations reveal that electric and magnetic fields are two different forms of the same thing – the electromagnetic field."
- "Optical fibers use total internal reflection to guide light along their lengths, allowing long distance communication without signal loss due to attenuation."
- "Quantum electrodynamics accurately explains the behavior of electrons in atoms and the interactions between photons and matter."
- "Eddington's experiment during a solar eclipse provided strong evidence for Einstein's theory of general relativity by verifying that gravity bends light."
- "Birefringence occurs in crystals with anisotropic properties, leading to double refraction of linearly polarized light and interesting applications like wave plates and polarizers."
- "Dielectrics affect the electric fields surrounding them, leading to the study of dielectrophoresis which has applications in cell manipulation techniques."
- "Metamaterials engineered to have unusual properties not found in natural substances have potential uses such as cloaking devices, superlenses, and perfect absorbers."
- "Plasma physicists design controlled nuclear fusion experiments using torus-shaped magnetic confinement vessels called tokamaks or stellarators to harvest clean energy."
- "Spintronics seeks to manipulate spin instead of charge for computer technology applications, potentially leading to faster, more efficient data storage and processing."
重要常数
- Speed of Light (c) - approximately equal to 3 × 108 meters per second (m/s).
- Permittivity of Free Space (ε0) - approximately equal to 8.854 × 10-12 faraday per meter (F/m).
- Permeability of Free Space (μ0) - approximately equal to 4π × 10-7 henry per meter (H/m).
- Elementary Charge (e) - approximately equal to 1.602×10^-19 coulombs (C).
- Planck Constant (h) -approximately equal to 6.63×10^-34 joule seconds (J s).
- Fine Structure Constant (α) - approximately equal to 1/137.
- Reduced Plank Constant (ħ) - approximately equal to 1.05457×10^-34 J s.
- Boltzmann Constant (kB) - approximately equal to 1.38×10^-23 joules per kelvin (J K-1).
- Normalized Lorenz Numbers (Lorenz Number)(ln) - The ratio of the conductive heat capacity to the electronic specific heat times Avogadro's Constant.
- Relative Permittivity(Er)- It is the ratio of permittivity of material relative to free space permittivity (ε0) . It gives us an idea about how a material can affect electric fields inside it.
名词解释
电动力学
Electric multipole moment
An electric multipole moment refers to any higher-order extension of point charges exhibited by some distribution of charges. It indicates the propensity of said arrangement to create a systematic force field around it resembling those resulting from more elementary configurations. In particular, dipole moments arise from oppositely charged centers separated by a small distance. Quadrupole components involve two closely spaced positive and negative points symmetrically situated along axes perpendicular to each other. Octupoles include three sets of such pairs organized analogously; hexapoles follow suit but now involving sixfold symmetry, etcetera. Calculating these entities permits evaluating electrodynamic properties in realistic scenarios where many charges interactively influence one another and their surroundings. Examples include distributions generated by atoms, molecules, crystalline structures, planetary systems, stars, galaxies, and cosmological domains. Understanding how multipole moments function proves helpful in understanding numerous phenomena associated with static electricity, conduction, insulation, magnetism, radioactivity, and other electromagnetic topics found throughout modern life. Applications of multipole principles find application in diverse areas including medical treatments such as cancer therapy using ionizing radiation, data transmission through communication satellites, global positioning utilizing GPS signals reflecting off Earth's atmosphere, navigation guidance provided by celestial bodies, and mitigation strategies addressing space weather impacts on human infrastructure.
Maxwell Equations
The four Maxwell Equations are fundamental laws in classical physics that describe the behavior of both static charges and dynamic systems involving alternating currents. These equations relate the sources of electrical and magnetic fields (charge densities and current densities) and their associated fields (the electric and magnetic fields themselves). The first three equations state that divergences of electric fields and vector potentials have close relationships with charges and derivatives of magnetic fields; while the last equation describes changes in magnetic fields resulting from a rate change of nearby electric fields. Underlying these equations are principles including gauge freedom and conservation of electric and magnetic fluxes through a specified region over a given amount of time. Knowledge of these equations along with appropriate boundary conditions allows physicists and engineers to predict the distributions of electromagnetic fields throughout realistic scenarios involving complex geometries and materials properties.
Waveguide
A waveguide is a device that guides electromagnetic waves along a specific path. It works by confining and directing microwaves, radio frequency energy or light to propagate in one direction only. The physical structure of a waveguide determines which type of electromagnetic wave it can guide, with rectangular and circular being common shapes for different types of applications. Waveguides are widely used in various fields such as electronics, optics, telecommunications, radar systems, and satellite communications. They help transmit signals over long distances without losing signal strength due to their ability to prevent interference from external sources. Moreover, they offer increased efficiency in power transmission through their unique properties including low loss, high thermal stability, and small size.
Resonant cavity
In electromagnetics, a resonant cavity is a hollow space designed to selectively amplify a certain frequency of radiation at the expense of other frequencies. This phenomenon occurs when the dimensions of the cavity are chosen so that the wavelength of the desired frequency matches its width and height. When an input signal enters the cavity, it excites standing waves within the enclosed space that reinforce and magnify the desired frequency while suppressing others. Resonant cavities have many practical uses, ranging from antennas in wireless communication to laser devices in optical fiber technology. In quantum mechanics, a similar concept applies where electrons or photons can exist inside cavities in discrete states determined by their energies. These states can be manipulated using externally applied electric fields, providing opportunities for research into emerging technologies such as quantum computing and cryptography. Overall, the study of resonant cavities offers fascinating insights into fundamental phenomena across multiple disciplines, making them valuable tools both theoretically and practically.
AB effect
The Aharonov-Bohm (A-B) effect describes how particles moving near strong magnetic fields experience changes in their motion due to electromagnetic interactions, even though they do not physically pass through the field region. By placing charged particles within an area enclosed by a solenoid carrying a constant current, electrons traversing nearby paths encounter a complex interference pattern determined by the magnetic flux flowing through the encircled surface. This phenomenon reveals previously unnoticed nonlocal effects arising from electromagnetic potentials, emphasizing the importance of analyzing the total gauge-invariant electromagnetic vector potential rather than just considering local electric fields. Moreover, demonstrating experimentally observable outcomes connected to nonphysical regions of magnetic influence highlights the conceptual difficulties surrounding the interpretation of quantum mechanics and the relationship between wave-particle duality. Ultimately, understanding the A-B effect remains significant for further advances related to electron scattering, vortex dynamics, topological phases, and nanoscale devices based on spintronic technologies.
superconductivity and London phenomenological theory
Superconductivity is an incredibly useful property observed in certain materials under specific conditions. These materials lose resistance below a characteristic temperature, creating superconducting states where electric currents persist virtually forever under low magnetic fields, generating Meissner effects expelling external ones, and displaying quantization rules governing their behavior.
计算与数值方法
Mirror image method
The mirror image method is an analytical technique used to calculate the potential distribution created by an irregularly shaped object embedded within a homogeneous dielectric material. The idea behind the method is to construct a virtual image of the original shape, which has a complementary form to its counterpart lying in the plane of symmetry formed by the interface. This process is carried out assuming the same electrostatic boundary conditions on both sides of the interface. Once the virtual image is determined, the corresponding potential distribution can be calculated in the region exterior to the object using standard integral equations or direct solutions such as finite elements or boundary element methods.
The mirror image approach provides a simple way to model complex shapes immersed in a medium without having to solve partial differential equations directly. Additionally, it offers considerable advantages when analyzing problems related to wave scattering, antenna performance evaluation, impedance matching, and signal integrity analysis. Overall, the mirror image method plays a crucial role in advancing theoretical and practical aspects of electrical engineering and its applications in various disciplines, including telecommunications, biomedical devices, energy harvesting systems, and others.
Green function method
In mathematics and physics, the Green function method refers to a collection of techniques that involve exploiting Green's functions to find particular solutions to differential equations or integral equations. A Green function represents the general solution to a homogeneous version of the equation being investigated; i.e., the same differential equation or integral equation with zero forcing term.
The idea behind the method revolves around substituting the Green function into the given equation along with any appropriate source term(s). After integrating by parts, subtracting the homogeneous equation, and applying integration by substitution or contour integration, the result often takes the form of convolution with a known kernel (the residual function), followed by adding the boundary values (if applicable). With these key steps established, the actual work lies in evaluating these integrals and assembling all contributions to eventually arrive at an expression for the sought after solution.
Some benefits of employing the Green function method stem from its broad applicability beyond first-order problems: second-order ordinary differential equations, Sturm–Liouville systems, elliptic, parabolic, and hyperbolic PDEs, Fredholm and Volterra equations, etc. On the flip side, the drawback resides in demanding substantial familiarity with advanced calculus, functional analysis, and distribution theory concepts. Since the treatment involves heavy machinery, mastery of relevant mathematical foundations can greatly facilitate handling different types of Green functions and associated singular kernels that arise during computations. Overall, when suitably trained practitioners engage the process, the Green function method provides powerful tools for addressing a variety of mathematical modeling problems across numerous physical sciences, engineering, computer graphics animation industries, among others.
FDM
The finite-difference method (FDM) is a numerical approach for solving partial differential equations (PDEs). Instead of trying to solve the PDE directly, this technique approximates the solution by dividing the domain into a grid of smaller cells. Inside each cell, FDM assumes the relationship between variables is constant, allowing one to obtain algebraic expressions for those values based on boundary conditions. By iteratively applying these relations to all cells in the grid, the algorithm constructs approximate solutions to the original problem. One significant advantage of FDM is its simplicity and versatility, permitting efficient implementations on computers even for complex geometries and disparate spatial scales. Applications range from fluid dynamics simulations to seismic analysis and image processing, demonstrating the ubiquity and impact of this computational tool in modern science and engineering practices.
FEM
The finite element method (FEM) is another popular numerical technique for solving partial differential equations (PDEs) in physics, engineering, and related areas. While similar in purpose to the finite-difference method, FEM introduces more flexibility by representing domains as meshes composed of elements with varying shapes rather than regular grids. Each element has its own contribution to the overall solution based on local assumptions about the behavior of the unknown function within that area. Additionally, FEM allows analysts to incorporate constraints arising from discontinuities, nonlinear relationships, and irregular geometry by subdividing elements further or adopting specialized shape functions. The algorithm ultimately generates coefficients defining how components combine to create the final approximation of the solution. Advantages of FEM include greater accuracy and adaptability compared to some alternative methods, but its increased complexity means implementing well-behaved software codes requires expertise and careful attention to detail.