线性代数|分块对角矩阵的定义和性质

前置知识:

  • 阶梯形行列式的性质

定义 设 A \boldsymbol{A} A n n n 阶方阵,若 A \boldsymbol{A} A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即
A = ( A 1 O A 2 ⋱ O A s ) \boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_1 & & & \boldsymbol{O} \\ & \boldsymbol{A}_2 & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{A}_s \end{pmatrix} A= A1OA2OAs
其中 A i   ( i = 1 , 2 , ⋯   , s ) \boldsymbol{A}_i \ (i=1,2,\cdots,s) Ai (i=1,2,,s) 都是方阵,那么称 A \boldsymbol{A} A 为分块对角矩阵。

根据阶梯状行列式的性质,分块对角矩阵的行列式具有如下性质:

性质 1 分块对角矩阵的行列式满足
∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A s ∣ |\boldsymbol{A}| = |\boldsymbol{A}_1| |\boldsymbol{A}_2| \cdots |\boldsymbol{A}_s| A=A1∣∣A2As

证明 由阶梯状行列式的性质可知,显然满足。

根据性质 1 可知,分块对角矩阵的逆矩阵具有如下性质

性质 2 若 ∣ A i ∣ ≠ 0   ( i = 1 , 2 , ⋯   , s ) |\boldsymbol{A}_i| \ne 0 \ (i=1,2,\cdots,s) Ai=0 (i=1,2,,s),则 ∣ A ∣ ≠ 0 |\boldsymbol{A}| \ne 0 A=0,并有
A − 1 = ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) \boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{A}_1^{-1} & & & \boldsymbol{O} \\ & \boldsymbol{A}_2^{-1} & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{A}_s^{-1} \end{pmatrix} A1= A11OA21OAs1

证明 不妨设 B = ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) \boldsymbol{B} = \begin{pmatrix} \boldsymbol{A}_1^{-1} & & & \boldsymbol{O} \\ & \boldsymbol{A}_2^{-1} & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{A}_s^{-1} \end{pmatrix} B= A11OA21OAs1 ,根据分块对角矩阵的性质,有
A B = ( A 1 O A 2 ⋱ O A s ) ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) = ( A 1 A 1 − 1 O A 2 A 2 − 1 ⋱ O A s A s − 1 ) = ( E O E ⋱ O E ) = E \boldsymbol{A} \boldsymbol{B} = \begin{pmatrix} \boldsymbol{A}_1 & & & \boldsymbol{O} \\ & \boldsymbol{A}_2 & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{A}_s \end{pmatrix} \begin{pmatrix} \boldsymbol{A}_1^{-1} & & & \boldsymbol{O} \\ & \boldsymbol{A}_2^{-1} & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{A}_s^{-1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{A}_1 \boldsymbol{A}_1^{-1} & & & \boldsymbol{O} \\ & \boldsymbol{A}_2 \boldsymbol{A}_2^{-1} & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{A}_s \boldsymbol{A}_s^{-1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{E} & & & \boldsymbol{O} \\ & \boldsymbol{E} & & \\ & & \ddots & \\ \boldsymbol{O} & & & \boldsymbol{E} \end{pmatrix} = \boldsymbol{E} AB= A1OA2OAs A11OA21OAs1 = A1A11OA2A21OAsAs1 = EOEOE =E
根据逆矩阵的定义可知,矩阵 B \boldsymbol{B} B 为矩阵 A \boldsymbol{A} A 的逆矩阵,即 B = A − 1 \boldsymbol{B} = \boldsymbol{A}^{-1} B=A1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值