前置知识:
- 【定义】矩阵
定义 1(初等行变换) 下面三种变换称为矩阵的行初等变换:
- 对换两行(对换 i , j i,j i,j 两行,记作 r i ↔ r j r_i \leftrightarrow r_j ri↔rj);
- 以数 k ≠ 0 k \ne 0 k=0 乘某一行中的所有元(第 i i i 行乘 k k k,记作 r i × k r_i \times k ri×k)
- 把某一行所有元的 k k k 倍加到另一行对应的元上去(第 j j j 行的 k k k 倍加到第 i i i 行上,记作 r i + k r j r_i + k r_j ri+krj。
定义 2(初等列变换) 将定义 1 中的 “行” 换成 “列”,即得矩阵的初等列变换的定义(所用记号是把 “ r r r” 换成 “ c c c”)
矩阵的初等行变换与初等列变换,统称初等变换。
显然,三种初等变换都是可逆的,且其逆变换是同一类型的初等变换;变换 r i ↔ r j r_i \leftrightarrow r_j ri↔rj 的逆变换就是其本身;变换 r i × k r_i \times k ri×k 的逆变换为 r i × 1 k r_i \times \frac{1}{k} ri×k1(或记作 r i ÷ k r_i \div k ri÷k);变换 r i + k r j r_i + k r_j ri+krj 的逆变换为 r i + ( − k ) r j r_i + (-k)r_j ri+(−k)rj(或记作 r i − k r j r_i - k r_j ri−krj)。
定义 3(矩阵等价) 如果矩阵 A \boldsymbol{A} A 经有限次初等行变换变成矩阵 B \boldsymbol{B} B,就称矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 行等价,记作 A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} A∼rB;如果矩阵 A \boldsymbol{A} A 经有限次初等列变换变成矩阵 B \boldsymbol{B} B,就称矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 列等价,记作 A ∼ c B \boldsymbol{A} \stackrel{c}{\sim} \boldsymbol{B} A∼cB;如果矩阵 A \boldsymbol{A} A 经有限次初等变换变成矩阵 B \boldsymbol{B} B,就称矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 等价,记作 A ∼ B \boldsymbol{A} \sim \boldsymbol{B} A∼B。
矩阵之间的等价关系具有下列性质:
- 反身性: A ∼ A \boldsymbol{A} \sim \boldsymbol{A} A∼A;
- 对称性:若 A ∼ B \boldsymbol{A} \sim \boldsymbol{B} A∼B,则 B ∼ A \boldsymbol{B} \sim \boldsymbol{A} B∼A;
- 传递性:若 A ∼ B \boldsymbol{A} \sim \boldsymbol{B} A∼B, B ∼ C \boldsymbol{B} \sim \boldsymbol{C} B∼C,则 A ∼ C \boldsymbol{A} \sim \boldsymbol{C} A∼C。