线性代数|定义:矩阵初等变换和矩阵等价

前置知识:

  • 【定义】矩阵

定义 1(初等行变换) 下面三种变换称为矩阵的行初等变换:

  • 对换两行(对换 i , j i,j i,j 两行,记作 r i ↔ r j r_i \leftrightarrow r_j rirj);
  • 以数 k ≠ 0 k \ne 0 k=0 乘某一行中的所有元(第 i i i 行乘 k k k,记作 r i × k r_i \times k ri×k
  • 把某一行所有元的 k k k 倍加到另一行对应的元上去(第 j j j 行的 k k k 倍加到第 i i i 行上,记作 r i + k r j r_i + k r_j ri+krj

定义 2(初等列变换) 将定义 1 中的 “行” 换成 “列”,即得矩阵的初等列变换的定义(所用记号是把 “ r r r” 换成 “ c c c”)

矩阵的初等行变换与初等列变换,统称初等变换。

显然,三种初等变换都是可逆的,且其逆变换是同一类型的初等变换;变换 r i ↔ r j r_i \leftrightarrow r_j rirj 的逆变换就是其本身;变换 r i × k r_i \times k ri×k 的逆变换为 r i × 1 k r_i \times \frac{1}{k} ri×k1(或记作 r i ÷ k r_i \div k ri÷k);变换 r i + k r j r_i + k r_j ri+krj 的逆变换为 r i + ( − k ) r j r_i + (-k)r_j ri+(k)rj(或记作 r i − k r j r_i - k r_j rikrj)。

定义 3(矩阵等价) 如果矩阵 A \boldsymbol{A} A 经有限次初等行变换变成矩阵 B \boldsymbol{B} B,就称矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 行等价,记作 A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} ArB;如果矩阵 A \boldsymbol{A} A 经有限次初等列变换变成矩阵 B \boldsymbol{B} B,就称矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 列等价,记作 A ∼ c B \boldsymbol{A} \stackrel{c}{\sim} \boldsymbol{B} AcB;如果矩阵 A \boldsymbol{A} A 经有限次初等变换变成矩阵 B \boldsymbol{B} B,就称矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 等价,记作 A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB

矩阵之间的等价关系具有下列性质:

  • 反身性: A ∼ A \boldsymbol{A} \sim \boldsymbol{A} AA
  • 对称性:若 A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB,则 B ∼ A \boldsymbol{B} \sim \boldsymbol{A} BA
  • 传递性:若 A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB B ∼ C \boldsymbol{B} \sim \boldsymbol{C} BC,则 A ∼ C \boldsymbol{A} \sim \boldsymbol{C} AC
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值