数学/线性代数 {矩阵初等变换,[阶梯形/最简形]矩阵,初等矩阵}

数学/线性代数 {矩阵初等变换,[阶梯形/最简形]矩阵,初等矩阵};

@LOC_COUNTER: 3;

矩阵的初等变换

定义

矩阵的初等变换 和行列式的变换 是完全一样的;
. LINK: (https://editor.csdn.net/md/?articleId=130092391)-(@LOC_2);

交换两{行/列};

将某一{行/列}所有元素, 同乘非零常数;

某一{行/列}的k倍, 加到另一行上去;

相关术语

{两个矩阵的等价};

如果矩阵A可通过有限次 行变换, 变成矩阵B, 则称他俩是行等价的, 记作 A ∼ r B A \sim ^ r B ArB;

如果矩阵A可通过有限次 行变换, 变成矩阵B, 则称他俩是列等价的, 记作 A ∼ l B A \sim ^ l B AlB;

如果矩阵A可通过有限次 行和列变换, 变成矩阵B, 则称他俩是等价的, 记作 A ∼ B A \sim B AB;

性质

对矩阵A进行行操作后 得到 o p R ( A ) opR(A) opR(A), 对矩阵 A T A^T AT进行 对应的 列操作后 得到 o p C ( A T ) opC(A^T) opC(AT), 则有: o p R ( A ) = o p C ( A T ) T opR(A) = opC(A^T)^T opR(A)=opC(AT)T (这里的等号, 是两个矩阵的相等);

证明: 因为 A A A的任何行 是完全等于 A T A^T AT的对应列, 因此 你怎么操作A的行 就等价于 怎么操作 A T A^T AT的列, 然后对操作后的 A T A^T AT 再进行一次转置;

推论: 如果 f ( A ) = f ( A T ) f( A) = f( A^T) f(A)=f(AT), 此时对行变换成立的结论 对相同的列变换 也成立;

这个推论很重要, 举几个例子;

f ( A ) = ∣ A ∣ f(A) = |A| f(A)=A (即行列式), 此时有 f ( A ) = f ( A T ) f(A) = f(A^T) f(A)=f(AT), 对于行变换-2 (某一行同乘一个常数K), 已知结论: f ( o p R ( A ) ) = K ∗ f ( A ) f( opR(A)) = K*f(A) f(opR(A))=Kf(A) ( o p R opR opR表示 任意的行变换-2);
那么会有推论: f ( o p C ( A ) ) = K ∗ f ( A ) f(opC(A)) = K*f(A) f(opC(A))=Kf(A) ( o p C opC opC表示 任意的列变换-2); (这个结论是独立的, 也就是 o p C opC opC 并不是和 o p R opR opR对应的);
证明: f ( o p C ( A ) ) = f ( o p R ′ ( A T ) T ) = f ( o p R ′ ( A T ) ) = K ∗ f ( A T ) = K ∗ f ( A ) f(opC(A)) = f( opR'( A^T)^T) =f( opR'( A^T)) = K * f( A^T) = K* f(A) f(opC(A))=f(opR(AT)T)=f(opR(AT))=Kf(AT)=Kf(A); (注意 o p R ′ opR' opR 可不是任意的, 他必须是和 o p C opC opC对应的, 比如 o p C opC opC是操作的 i i i列 则 o p R ′ opR' opR必须得是 i i i行);

再举个例子;
f ( A ) = R ( A ) f(A) = R(A) f(A)=R(A) (即矩阵的秩), 此时有 f ( A ) = f ( A T ) f(A) = f(A^T) f(A)=f(AT), 对于行变换-1 (交换两行), 已知结论: f ( o p R ( A ) ) = f ( A ) f(opR(A)) = f(A) f(opR(A))=f(A) (opR表示 任意的行变换-1

说白了就是 已知一个对行变换成立的性质, 如果该性质 对行列式转置是等价的, 那么 可以推出 该性质对列变换也是成立的;
但是要注意, 你应该对每个不同的行变换 单独讨论, 即(行变换-{1,2,3}) 三种情况去单独讨论 不能一并讨论, 比如 在矩阵的行列式值 这个性质上, 行变换-1 会导致取负, 而行变换-2 会导致 ∗ K * K K, 而行变换-3的结果 是行列式值不变, 他们的情况是不同的;
上面的性质是说明, 行变换-x 会产生怎样的效果, 则他对应的 列变换-x 也会导致 完全相同的效果;

@DELI;

设矩阵 A , B A,B A,B m ∗ n m*n mn矩阵;

A ∼ r B A \sim ^r B ArB    ⟺    \iff 存在 m m m阶可逆矩阵R, 使得 R A = B RA = B RA=B;

A ∼ l B A \sim ^l B AlB    ⟺    \iff 存在 n n n阶可逆矩阵R, 使得 A R = B AR = B AR=B;

A ∼ B A \sim B AB    ⟺    \iff 存在 m m m阶可逆矩阵 R 1 R_1 R1 和 n阶可逆矩阵 R 2 R_2 R2, 使得 R 1 A R 2 = B R_1 A R_2 = B R1AR2=B;

@DELI;

3种变换, 都是可逆的;

即矩阵A进行某变换x 得到矩阵B, 那么矩阵B 可以通过变换 x − 1 x^{-1} x1 再得到矩阵A;
. Ri <-> Rj的逆变换是其本身; Ri * k的逆为Ri * (1/k); Rj + k*Ri的逆为Rj + (-k)Ri;

{主元, 阶梯形矩阵,最简形矩阵,标准形矩阵}

定义

{零行,非零行};

如果矩阵的某一行 全为0, 则为零行; 否则为非零行;

@DELI;

首非零元 (也称主元);

对于一个非零行, 从左到右起 第一个非零元, 称为首非零元; (0,0,1,0,2,0中 1为首非零元);

@DELI;

行阶梯形矩阵 Row Echelon Form;

满足2点: (1: 零行下面的所有行 一定也是零行), (2: 如果 r , r + 1 r,r+1 r,r+1两行都为非零行 设 r r r行的首非零元的列号为 x x x r + 1 r+1 r+1行的首非零元的列号 y y y, 则有 x < y x<y x<y);

@DELI;

行最简形矩阵 Reduced Row Echelon;

行阶梯形矩阵A, 如果满足: (1: 首非零元均为1), (2: 首非零元所在列的其他所有元素 均为0), 则A为 行最简形矩阵;

@DELI;

标准形矩阵;

若矩阵A满足: 左上角的 k ∗ k k*k kk矩阵 为单位矩阵 其他所有元素均为0, 则A为标准形;

性质

x ′ x' x为矩阵x的最简形(或阶梯形), 对于行数相同的两个矩阵 A , B A,B A,B, 则 ( A , B ) (A,B) (A,B)(分块矩阵)的最简形矩阵 一定形如 ( A ′ , ? ) (A', ?) (A,?), 因此 一定有 R ( A ) ≤ R ( ( A , B ) ) R(A) \leq R( (A,B)) R(A)R((A,B)) (R为矩阵的秩);

@DELI;

令所有主元 按照行号从小到大排序, 记作[(r1,c1), (r2,c2), …], 则一定有:
. [r1,r2,...] = [1,2,...] (换句话说, 如果非零行个数是K, 则有K个主元 都在前K行 每行一个, 下面的N-K行 都是零行);
. c1 < c2 < ... (注意, c1不一定为1, 且c[i+1] - ci也不一定为1);

@DELI;

MARK: @LOC_1;

行阶梯型矩阵 如果是可逆方阵, 则他一定不存在非零行 (即, 主元都在主对角线上);
. 因为可逆矩阵 一定不存在零行/零列 LINK: (https://editor.csdn.net/md/?not_checkout=1&articleId=130158501)-(@LOC_6);

同理, 行最简形矩阵 如果是可逆方阵, 则他一定是单位矩阵E;

@DELI;

任何矩阵, 都可以通过有限次 初等行变换, 变成行最简形矩阵;
. 这个行最简形矩阵 是唯一的; 显然任何矩阵也可以变成行阶梯形矩阵 但他不是唯一的 (比如他乘以常数K后, 依然是行阶梯形)

任何行最简形矩阵, 通过有限次 初等初等列变换, 变成标准形矩阵;

错误

不存在列阶梯形/列最简形矩阵这些概念, 阶梯形和最简形 都是针对来定义的;

@DELI;

A矩阵的 行最简形, 不一定等于, A T A^T AT行最简形;

A = [ 1   0   0 0   1   1 0   0   0 ] A = \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 1 \\ 0 \ 0 \ 0\end{bmatrix} A= 1 0 00 1 10 0 0 这是行最简形, A T = [ 1   0   0 0   1   0 0   1   0 ] = [ 1   0   0 0   1   0 0   0   0 ] A^T = \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 1 \ 0\end{bmatrix} = \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \end{bmatrix} AT= 1 0 00 1 00 1 0 = 1 0 00 1 00 0 0 , 显然 A , A T A, A^T A,AT 他俩的行最简形矩阵 是不同的; (当然他俩有一些共同的性质, 比如矩阵的秩是相同的);

@DELI;

X ′ X' X X X X行最简形矩阵, 如果矩阵 C = ( A , B ) C = (A,B) C=(A,B), 则 C ′ = ( A ′ , x ) C' = (A', x) C=(A,x);

矩阵A为 m ∗ n 1 m*n1 mn1, 矩阵B为 m ∗ n 2 m*n2 mn2, 则矩阵C为 m ∗ ( n 1 + n 2 ) m*(n1+n2) m(n1+n2); 矩阵C的行最简形 一定是形如 ( A ′ , x ) (A', x) (A,x)的形式, 也就是 C ′ C' C m ∗ [ 1 , 2 , . . , n 1 ] m*[1,2,..,n1] m[1,2,..,n1]这个 m ∗ n 1 m*n1 mn1的子矩阵 就是 A A A行最简形; (因为将C变成 C ′ C' C的行变换操作, 如果单独应用在A上, 则A就会变成 A ′ A' A);

推论: 如果要求 A , C A,C A,C的行最简矩阵, 你不用单独的处理这两个矩阵, 只去处理 C C C即可, 得到 C ′ C' C后, 把他拆分的左右两个子矩阵 那么左侧这个 m ∗ n 1 m*n1 mn1的子矩阵 就是 A ′ A' A;
. R ( C ) = R ( A ) + ? R(C) = R(A) + ? R(C)=R(A)+?, 其中 ? ? ? x x x子矩阵里 主元的个数;

但是注意, 这个 x x x (即 C ′ C' C中 右侧这个 m ∗ n 2 m*n2 mn2的子矩阵) 他和 B ′ B' B没有关系的;
. 也就是, R ( C ) = R ( A ) + ? R(C) = R(A) + ? R(C)=R(A)+?, 其中 ? ? ? x x x子矩阵里 主元的个数, 但这个 ? ? ? 不一定等于 R ( B ) R(B) R(B);
. 比如, C = [ 1   2   − 1   0 0   2   1   0 0   0   0   1 ] C = \begin{bmatrix} 1 \ 2 \ {-1} \ 0 \\ 0 \ 2 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} C= 1 2 1 00 2 1 00 0 0 1 A A A为左侧 3 ∗ 1 3*1 31的子矩阵, B为右侧 3 ∗ 3 3*3 33的子矩阵, 那么显然 R ( C ) = 3 R(C) = 3 R(C)=3, 但 R ( A ) = 1 , R ( B ) = 3 R(A) = 1, R(B) = 3 R(A)=1,R(B)=3;

@DELI;

行阶梯形矩阵A, 确实可以变成 行最简形矩阵B;
. 但并不是说, 将A每个主元变成1 然后将他上面的所有元素 都变成0, 不是这样的;

行阶梯形
0 2 2 2 4
0 0 0 3 3
0 0 0 0 0

0 1 2 0 4
0 0 0 1 3
0 0 0 0 0
这是错误的(虽然他确实是行最简形); 你必须是使用*行变换*;

R1 / 2, R2 / 3, R1 - R2
0 1 1 0 1
0 0 0 1 1
0 0 0 0 0

例题

#行最简形矩阵#;

1 2 0 2 0 2 2
0 0 1 2 0 2 2
0 0 0 0 1 2 2
0 0 0 0 0 0 0

检查一个矩阵 是否是行最简形:
1: 零行都是下面, 上面都是非零行;
2: 每个主元所在列, 上下都是 0 0 0; 主元所在行的左侧 都是 0 0 0;

解释

`x`表示首非零元(是个任意非0的数), `?`表示任意数;

行阶梯形矩阵
0 x ? ? ?
0 0 0 x ?
0 0 0 0 0
0 0 0 0 0

行最简形矩阵
0 1 ? 0 ?
0 0 0 1 ?
0 0 0 0 0
0 0 0 0 0

标准形矩阵
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

初等矩阵

定义

初等矩阵;

对单位矩阵E, 进行一次初等变换后 得到的矩阵 称为初等矩阵;

@DELI;

初等变换的矩阵乘法;

对任意矩阵 m ∗ n m*n mn的矩阵A:
1 进行初等行变换x操作后 得到矩阵B, 则 B = P ∗ A B = P * A B=PA (左乘), 其中P为x初等行变换所对应的 m ∗ m m*m mm的初等矩阵;
2 同理, 进行初等列变换x操作后 得到矩阵B, 则 B = A ∗ P B = A * P B=AP (右乘), 其中P为x初等列变换所对应的 n ∗ n n*n nn的初等矩阵;

@DELI;

若干个初等变换, 等价于 若干个矩阵的乘法;

MARK: @LOC_0;

对矩阵A, 进行(x1,x2,x3)初等行变换 (设他们对应的初等行矩阵为P1,P2,P3) 后, 得到矩阵 B B B; 那么, B = P 3 ∗ P 2 ∗ P 1 ∗ A B = P3 * P2 * P1 * A B=P3P2P1A;
. 这里也间接验证了矩阵乘法的结合律, 即我们一般看这个式子 会按照从左到右的次序 即 ( ( P 3 ∗ P 2 ) ∗ P 1 ) ∗ A ( (P3 * P2) * P1)* A ((P3P2)P1)A, 但其实 从初等行变换的角度 他的次序是 P 3 ∗ ( P 2 ∗ ( P 1 ∗ A ) ) P3 * ( P2 * (P1 * A)) P3(P2(P1A)), 他们的结果是一样的;
. 如果令 P = P 3 ∗ P 2 ∗ P 1 P = P3 * P2 * P1 P=P3P2P1, 则他等价于 P ∗ A P * A PA;
. 但是注意, B ≠ P 1 ∗ P 2 ∗ P 3 ∗ A B \neq P1 * P2 * P3 * A B=P1P2P3A, 一定要注意次序, A A A是先进行的 P 1 P1 P1操作 因此他要最先和A进行操作;

同理, 如果(x1,x2,x3)是初等变换, 则对应 A ∗ P 1 ∗ P 2 ∗ P 3 A * P1 * P2 * P3 AP1P2P3;

解释

@DELI;

对E, 进行某一初等操作(比如 i 行 ∗ K i行 * K iK) 得到初等矩阵 A A A, 同样的 对E 进行相同的操作(即 i 列 ∗ K i列*K iK) 得到初等矩阵B;
我们知道 A = B A = B A=B, 即同一操作 不管是作用在{行,列}上, 得到的初等矩阵是相同的;
即: A E = E B AE = EB AE=EB;

@DELI;

初等变换的矩阵乘法;

对于 m ∗ n m*n mn矩阵A, 比如对于交换(i,j)行的初等行变换, 原先是将A矩阵的这两个行进行交换 (但这是个操作, 如果要形式化的话, 你还得需要再创造新的符号语言), 那么 他可以形式化, 借助矩阵乘法就可以实现;
. 将这个操作 (即交换(i,j)行), 应用到一个 m ∗ m m*m mm的单位矩阵上 (比如单位矩阵交换(i,j)行后 得到P矩阵), 那么你让 P ∗ A P*A PA 就等价于 对A进行交换两行的操作;

@DELI;

对于5*5的单位矩阵, 交换(2,4)行 所对应的初等矩阵为:

1 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

其实就是 对将单位矩阵的 (2,4)行 交换;

性质

@DELI;

MARK: @LOC_2;

#若干个初等矩阵的乘法    ⟺    \iff 对E进行对应的初等变换#;

E 1 ∗ E 2... E n E1 * E2 ... En E1E2...En (引理: 初等矩阵 根据他{左乘/右乘} 该矩阵可以转换为 对应的{行/列}初等变换)
我们这里让他左乘 (即转换为 行变换), E 1 ∗ . . . E n ∗ E E1 * ... En * E E1...EnE 他就意味着: 对E单位矩阵 进行[En, ..., E1] 所对应的行变换操作后的矩阵, 就是 E 1 ∗ . . . E n E1*...En E1...En的结果;
. 也就是, 我们无需执行矩阵乘法, 就对 E E E矩阵 进行初等行变换操作后 得到的矩阵 就是答案;

@DELI;

对于同阶的初等矩阵 只要是同种变换类型(比如[交换12行, 交换12列]是同种类型), 那么不存在初等{行,列}矩阵的区分; 也就是 他俩对应的初等矩阵 是相同的!
. 比如, 你让单位矩阵E, 进行{交换12行/ 交换12列}操作, 得到的矩阵 是完全相同的;

因此对于初等矩阵, 他就是个矩阵, 不要去说初等(行/列)矩阵, 没有这个概念的;
. 因为 任意一个初等矩阵 比如他表示的是 i ∗ K i* K iK, 那么 他既可以表示: 第i行 ∗ K * K K这个行变换, 也可以表示: 第i ∗ K *K K这个列变换;

但初等矩阵有{左乘, 右乘}的区分, 比如 A ∗ B A*B AB (他俩都是初等矩阵);
1: 因为A在B的左侧, 所以 A ∗ B A*B AB 可以认为是: 对B矩阵 进行A所表示的行变换操作后 的结果;
2: 因为B在A的右侧, 所以 A ∗ B A*B AB 可以认为是: 对A矩阵 进行B所表示的列变换操作后 的结果;

@DELI;

因为任何矩阵A, 都可以通过行变换 变成唯一的行最简形矩阵B;
. A可逆    ⟺    \iff B可逆    ⟺    \iff B没有非零行;

@DELI;

初等矩阵, 都是可逆的;

比如E 进行x初等变换 得到了一个初等矩阵B, 那么 对B进行 x初等变换的逆变换 (比如x为第i行同乘K, 那么你再进行一次第i行同乘 1 / K 1/K 1/K操作, 就恢复原状了) 就会变回去单位矩阵E;

即, 行变换a 他的逆变换为b, 那么令A为a对应的矩阵 B为b对应的矩阵, 则有: A , B A,B A,B互为逆矩阵;

因此, 若干个同阶的初等矩阵(可以是行, 也可以是列) 的乘积, 是可逆矩阵;
. 因为, 初等矩阵都是可逆的;

@DELI;

设方阵A可逆, 则A一定可以写成 P 1 ∗ P 2 ∗ . . . P1*P2*... P1P2...(Pi为初等行矩阵)的形式;

其逆命题(即若干个 P i Pi Pi的乘积 是可逆矩阵) 显然是成立的, 因为每个初等矩阵都是可逆的;

换一种表述, 对于可逆矩阵A, 该矩阵可以通过对单位矩阵E 进行一系列的行变换而得到;

证明:
因为任何矩阵A 都可以通过若干次初等行变换 Q 1 , Q 2 , . . . , Q n Q1,Q2,...,Qn Q1,Q2,...,Qn而变成 行最简形, 该行最简形矩阵为 B = Q 1 ∗ Q 2 ∗ . . . ∗ Q n ∗ A B = Q1 * Q2 * ... * Qn * A B=Q1Q2...QnA;
此时由于A是可逆方阵 ( Q i Qi Qi也是可逆的), 故他们的乘积 即该行最简形矩阵B 也是可逆的;
. 因为B是可逆方阵, LINK: @LOC_1, 故B一定是单位矩阵; 令Pi为Qi的逆矩阵(也是逆变换对应的矩阵) Q 1 ∗ Q 2 ∗ . . . ∗ Q n Q1*Q2*...*Qn Q1Q2...Qn这矩阵的逆矩阵为 P n ∗ . . . ∗ P 2 ∗ P 1 = A Pn*...*P2*P1 = A Pn...P2P1=A (注意次序)

推论: 若方阵A可逆, 则A通过若干次行变换 可以变成单位矩阵E;
. 令A的逆矩阵为B, 则 B A = E BA = E BA=E, 而任意可逆矩阵B 都可以写成 P 1 ∗ P 2 ∗ . . . P1*P2*... P1P2...初等矩阵的形式;

因此, 方阵A可逆    ⟺    \iff A ∼ r E A \sim^r E ArE (两个矩阵行等价);

@DELI;

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值