数学/线性代数 {矩阵初等变换,[阶梯形/最简形]矩阵,初等矩阵};
@LOC_COUNTER: 3;
矩阵的初等变换
定义
矩阵的初等变换 和行列式的变换 是完全一样的;
.
LINK: (https://editor.csdn.net/md/?articleId=130092391)-(@LOC_2)
;
交换两{行/列};
将某一{行/列}所有元素, 同乘非零常数;
某一{行/列}的k倍, 加到另一行上去;
相关术语
{两个矩阵的等价};
如果矩阵A可通过有限次 行变换, 变成矩阵B, 则称他俩是行等价的, 记作 A ∼ r B A \sim ^ r B A∼rB;
如果矩阵A可通过有限次 行变换, 变成矩阵B, 则称他俩是列等价的, 记作 A ∼ l B A \sim ^ l B A∼lB;
如果矩阵A可通过有限次 行和列变换, 变成矩阵B, 则称他俩是等价的, 记作 A ∼ B A \sim B A∼B;
性质
对矩阵A进行行操作后 得到 o p R ( A ) opR(A) opR(A), 对矩阵 A T A^T AT进行 对应的 列操作后 得到 o p C ( A T ) opC(A^T) opC(AT), 则有: o p R ( A ) = o p C ( A T ) T opR(A) = opC(A^T)^T opR(A)=opC(AT)T (这里的等号, 是两个矩阵的相等);
证明: 因为 A A A的任何行 是完全等于 A T A^T AT的对应列, 因此 你怎么操作A的行 就等价于 怎么操作 A T A^T AT的列, 然后对操作后的 A T A^T AT 再进行一次转置;
推论: 如果 f ( A ) = f ( A T ) f( A) = f( A^T) f(A)=f(AT), 此时对行变换成立的结论 对相同的列变换 也成立;
这个推论很重要, 举几个例子;
f ( A ) = ∣ A ∣ f(A) = |A| f(A)=∣A∣ (即行列式), 此时有 f ( A ) = f ( A T ) f(A) = f(A^T) f(A)=f(AT), 对于行变换-2 (某一行同乘一个常数K), 已知结论: f ( o p R ( A ) ) = K ∗ f ( A ) f( opR(A)) = K*f(A) f(opR(A))=K∗f(A) ( o p R opR opR表示 任意的行变换-2);
那么会有推论: f ( o p C ( A ) ) = K ∗ f ( A ) f(opC(A)) = K*f(A) f(opC(A))=K∗f(A) ( o p C opC opC表示 任意的列变换-2); (这个结论是独立的, 也就是 o p C opC opC 并不是和 o p R opR opR对应的);
证明: f ( o p C ( A ) ) = f ( o p R ′ ( A T ) T ) = f ( o p R ′ ( A T ) ) = K ∗ f ( A T ) = K ∗ f ( A ) f(opC(A)) = f( opR'( A^T)^T) =f( opR'( A^T)) = K * f( A^T) = K* f(A) f(opC(A))=f(opR′(AT)T)=f(opR′(AT))=K∗f(AT)=K∗f(A); (注意 o p R ′ opR' opR′ 可不是任意的, 他必须是和 o p C opC opC对应的, 比如 o p C opC opC是操作的 i i i列 则 o p R ′ opR' opR