前置知识:
前置定理 1 设 A \boldsymbol{A} A 和 B \boldsymbol{B} B 为 $m \times n $ 矩阵,那么
- A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} A∼rB 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P,使 P A = B \boldsymbol{P} \boldsymbol{A} = \boldsymbol{B} PA=B;
- A ∼ c B \boldsymbol{A} \stackrel{c}{\sim} \boldsymbol{B} A∼cB 的充分必要条件是存在 n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 A Q = B \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} AQ=B;
- A ∼ B \boldsymbol{A} \sim \boldsymbol{B} A∼B 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P 和 n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 P A Q = B \boldsymbol{P} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} PAQ=B。
证明见 “矩阵初等变换与矩阵乘法的联系”。
1 向量组等价与矩阵等价的关系
下面讨论向量组等价与矩阵变换的关系。
把向量组
A
A
A 和
B
B
B 所构成的矩阵依次记作
A
=
(
a
1
,
a
2
,
⋯
,
a
m
)
A = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m)
A=(a1,a2,⋯,am) 和
B
=
(
b
1
,
b
2
,
⋯
,
b
l
)
B = (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l)
B=(b1,b2,⋯,bl)。若向量组
B
B
B 能由向量组
A
A
A 线性表示,则有向量组
B
B
B 中的每个向量
b
j
(
j
=
1
,
2
,
⋯
,
l
)
\boldsymbol{b}_j \ (j=1,2,\cdots,l)
bj (j=1,2,⋯,l) 都能由向量组
A
A
A 线性表示,根据定义 5,即存在一组数
k
1
j
,
k
2
j
,
⋯
,
k
m
j
k_{1j},k_{2j},\cdots,k_{mj}
k1j,k2j,⋯,kmj,使
b
j
=
k
1
j
a
1
+
k
2
j
a
2
+
⋯
+
k
m
j
a
m
=
(
a
1
,
a
2
,
⋯
,
a
m
)
(
k
1
j
k
2
j
⋮
k
m
j
)
\boldsymbol{b}_j = k_{1j} \boldsymbol{a}_1 + k_{2j} \boldsymbol{a}_2 + \cdots + k_{mj} \boldsymbol{a}_m = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) \begin{pmatrix} k_{1j} \\ k_{2j} \\ \vdots \\ k_{mj} \end{pmatrix}
bj=k1ja1+k2ja2+⋯+kmjam=(a1,a2,⋯,am)
k1jk2j⋮kmj
从而有
(
b
1
,
b
2
,
⋯
,
b
l
)
=
(
a
1
,
a
2
,
⋯
,
a
m
)
(
k
11
k
12
⋯
k
1
l
k
21
k
22
⋯
k
2
l
⋮
⋮
⋮
k
m
1
k
m
2
⋯
k
m
l
)
(\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) \begin{pmatrix} k_{11} & k_{12} & \cdots & k_{1l} \\ k_{21} & k_{22} & \cdots & k_{2l} \\ \vdots & \vdots & & \vdots \\ k_{m1} & k_{m2} & \cdots & k_{ml} \end{pmatrix}
(b1,b2,⋯,bl)=(a1,a2,⋯,am)
k11k21⋮km1k12k22⋮km2⋯⋯⋯k1lk2l⋮kml
这里,矩阵
K
m
×
l
=
(
k
i
j
)
\boldsymbol{K}_{m \times l} = (k_{ij})
Km×l=(kij) 称为这一线性表示的系数矩阵。
由此可知,若
C
m
×
n
=
A
m
×
l
B
l
×
n
\boldsymbol{C}_{m \times n} = \boldsymbol{A}_{m \times l} \boldsymbol{B}_{l \times n}
Cm×n=Am×lBl×n,则矩阵
C
\boldsymbol{C}
C 的列向量组能由矩阵
A
\boldsymbol{A}
A 的列向量组线性表示,
B
\boldsymbol{B}
B 为这一表示的系数矩阵:
(
c
1
,
c
2
,
⋯
,
c
n
)
=
(
a
1
,
a
2
,
⋯
,
a
l
)
(
b
11
b
12
⋯
b
1
n
b
21
b
22
⋯
b
2
n
⋮
⋮
⋮
b
l
1
b
l
2
⋯
b
l
n
)
(\boldsymbol{c}_1,\boldsymbol{c}_2,\cdots,\boldsymbol{c}_n) = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_l) \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{l1} & b_{l2} & \cdots & b_{ln} \end{pmatrix}
(c1,c2,⋯,cn)=(a1,a2,⋯,al)
b11b21⋮bl1b12b22⋮bl2⋯⋯⋯b1nb2n⋮bln
同理可知,矩阵
C
\boldsymbol{C}
C 的行向量组能由矩阵
B
\boldsymbol{B}
B 的行向量组线性表示,
A
\boldsymbol{A}
A 为这一表示的系数矩阵:
( γ 1 T γ 2 T ⋮ γ m T ) = ( a 11 a 12 ⋯ a 1 l a 21 a 22 ⋯ a 2 l ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a l l ) ( β 1 T β 2 T ⋮ β l T ) \begin{pmatrix} \boldsymbol{\gamma}_1^T \\ \boldsymbol{\gamma}_2^T \\ \vdots \\ \boldsymbol{\gamma}_m^T \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ll} \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1^T \\ \boldsymbol{\beta}_2^T \\ \vdots \\ \boldsymbol{\beta}_l^T \end{pmatrix} γ1Tγ2T⋮γmT = a11a21⋮am1a12a22⋮am2⋯⋯⋯a1la2l⋮all β1Tβ2T⋮βlT
根据前置定理 1:设矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 行等价,即矩阵 A \boldsymbol{A} A 经初等行变换变成矩阵 B \boldsymbol{B} B,则 B \boldsymbol{B} B 的每个行向量都是 A \boldsymbol{A} A 的行向量组的线性组合,即 B \boldsymbol{B} B 的行向量组能由 A \boldsymbol{A} A 的行向量组线性表示。由于初等变换可逆,知矩阵 B \boldsymbol{B} B 亦可经初等行变换变为 A \boldsymbol{A} A,从而 A \boldsymbol{A} A 的行向量组也能由 B \boldsymbol{B} B 的行向量组线性表示。于是 A \boldsymbol{A} A 的行向量组与 B \boldsymbol{B} B 的行向量组等价。
类似可知,设矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 列等价,则 A \boldsymbol{A} A 的列向量组与 B \boldsymbol{B} B 的列向量组等价。
于是得到定理如下:
定理 1 若矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 行等价,则 A \boldsymbol{A} A 的行向量组与 B \boldsymbol{B} B 的行向量组等价。若矩阵 A \boldsymbol{A} A 与 B \boldsymbol{B} B 列等价,则 A \boldsymbol{A} A 的列向量组与 B \boldsymbol{B} B 的列向量组等价。
2 向量组等价与方程组可互推的关系
对方程组 A A A 的各个方程作线性运算所得到的一个方程就称为方程组 A A A 的一个线性组合;若方程组 B B B 的每个方程都是方程组 A A A 的线性组合,就称方程组 B B B 能由方程组 A A A 线性表示,这时方程组 A A A 的解一定是方程组 B B B 的解;若方程组 A A A 与方程组 B B B 能相互线性表示,就称这两个方程组可互推,可互推的线性方程组一定同解。