线性代数|向量组等价、矩阵等价与方程组可互推的关系

前置知识:


前置定理 1 设 A \boldsymbol{A} A B \boldsymbol{B} B 为 $m \times n $ 矩阵,那么

  1. A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} ArB 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P,使 P A = B \boldsymbol{P} \boldsymbol{A} = \boldsymbol{B} PA=B
  2. A ∼ c B \boldsymbol{A} \stackrel{c}{\sim} \boldsymbol{B} AcB 的充分必要条件是存在 n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 A Q = B \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} AQ=B
  3. A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 P A Q = B \boldsymbol{P} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} PAQ=B

证明见 “矩阵初等变换与矩阵乘法的联系”。


1 向量组等价与矩阵等价的关系

下面讨论向量组等价与矩阵变换的关系。

把向量组 A A A B B B 所构成的矩阵依次记作 A = ( a 1 , a 2 , ⋯   , a m ) A = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) A=(a1,a2,,am) B = ( b 1 , b 2 , ⋯   , b l ) B = (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) B=(b1,b2,,bl)。若向量组 B B B 能由向量组 A A A 线性表示,则有向量组 B B B 中的每个向量 b j   ( j = 1 , 2 , ⋯   , l ) \boldsymbol{b}_j \ (j=1,2,\cdots,l) bj (j=1,2,,l) 都能由向量组 A A A 线性表示,根据定义 5,即存在一组数 k 1 j , k 2 j , ⋯   , k m j k_{1j},k_{2j},\cdots,k_{mj} k1j,k2j,,kmj,使
b j = k 1 j a 1 + k 2 j a 2 + ⋯ + k m j a m = ( a 1 , a 2 , ⋯   , a m ) ( k 1 j k 2 j ⋮ k m j ) \boldsymbol{b}_j = k_{1j} \boldsymbol{a}_1 + k_{2j} \boldsymbol{a}_2 + \cdots + k_{mj} \boldsymbol{a}_m = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) \begin{pmatrix} k_{1j} \\ k_{2j} \\ \vdots \\ k_{mj} \end{pmatrix} bj=k1ja1+k2ja2++kmjam=(a1,a2,,am) k1jk2jkmj

从而有
( b 1 , b 2 , ⋯   , b l ) = ( a 1 , a 2 , ⋯   , a m ) ( k 11 k 12 ⋯ k 1 l k 21 k 22 ⋯ k 2 l ⋮ ⋮ ⋮ k m 1 k m 2 ⋯ k m l ) (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) \begin{pmatrix} k_{11} & k_{12} & \cdots & k_{1l} \\ k_{21} & k_{22} & \cdots & k_{2l} \\ \vdots & \vdots & & \vdots \\ k_{m1} & k_{m2} & \cdots & k_{ml} \end{pmatrix} (b1,b2,,bl)=(a1,a2,,am) k11k21km1k12k22km2k1lk2lkml
这里,矩阵 K m × l = ( k i j ) \boldsymbol{K}_{m \times l} = (k_{ij}) Km×l=(kij) 称为这一线性表示的系数矩阵。

由此可知,若 C m × n = A m × l B l × n \boldsymbol{C}_{m \times n} = \boldsymbol{A}_{m \times l} \boldsymbol{B}_{l \times n} Cm×n=Am×lBl×n,则矩阵 C \boldsymbol{C} C 的列向量组能由矩阵 A \boldsymbol{A} A 的列向量组线性表示, B \boldsymbol{B} B 为这一表示的系数矩阵:
( c 1 , c 2 , ⋯   , c n ) = ( a 1 , a 2 , ⋯   , a l ) ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋮ b l 1 b l 2 ⋯ b l n ) (\boldsymbol{c}_1,\boldsymbol{c}_2,\cdots,\boldsymbol{c}_n) = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_l) \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & & \vdots \\ b_{l1} & b_{l2} & \cdots & b_{ln} \end{pmatrix} (c1,c2,,cn)=(a1,a2,,al) b11b21bl1b12b22bl2b1nb2nbln
同理可知,矩阵 C \boldsymbol{C} C 的行向量组能由矩阵 B \boldsymbol{B} B 的行向量组线性表示, A \boldsymbol{A} A 为这一表示的系数矩阵:

( γ 1 T γ 2 T ⋮ γ m T ) = ( a 11 a 12 ⋯ a 1 l a 21 a 22 ⋯ a 2 l ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a l l ) ( β 1 T β 2 T ⋮ β l T ) \begin{pmatrix} \boldsymbol{\gamma}_1^T \\ \boldsymbol{\gamma}_2^T \\ \vdots \\ \boldsymbol{\gamma}_m^T \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ll} \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1^T \\ \boldsymbol{\beta}_2^T \\ \vdots \\ \boldsymbol{\beta}_l^T \end{pmatrix} γ1Tγ2TγmT = a11a21am1a12a22am2a1la2lall β1Tβ2TβlT

根据前置定理 1:设矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 行等价,即矩阵 A \boldsymbol{A} A 经初等行变换变成矩阵 B \boldsymbol{B} B,则 B \boldsymbol{B} B 的每个行向量都是 A \boldsymbol{A} A 的行向量组的线性组合,即 B \boldsymbol{B} B 的行向量组能由 A \boldsymbol{A} A 的行向量组线性表示。由于初等变换可逆,知矩阵 B \boldsymbol{B} B 亦可经初等行变换变为 A \boldsymbol{A} A,从而 A \boldsymbol{A} A 的行向量组也能由 B \boldsymbol{B} B 的行向量组线性表示。于是 A \boldsymbol{A} A 的行向量组与 B \boldsymbol{B} B 的行向量组等价。

类似可知,设矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 列等价,则 A \boldsymbol{A} A 的列向量组与 B \boldsymbol{B} B 的列向量组等价。

于是得到定理如下:

定理 1 若矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 行等价,则 A \boldsymbol{A} A 的行向量组与 B \boldsymbol{B} B 的行向量组等价。若矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 列等价,则 A \boldsymbol{A} A 的列向量组与 B \boldsymbol{B} B 的列向量组等价。

2 向量组等价与方程组可互推的关系

对方程组 A A A 的各个方程作线性运算所得到的一个方程就称为方程组 A A A 的一个线性组合;若方程组 B B B 的每个方程都是方程组 A A A 的线性组合,就称方程组 B B B 能由方程组 A A A 线性表示,这时方程组 A A A 的解一定是方程组 B B B 的解;若方程组 A A A 与方程组 B B B 能相互线性表示,就称这两个方程组可互推,可互推的线性方程组一定同解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值