前置知识:
1 施密特正交化过程
设 a 1 , ⋯ , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,⋯,ar 是向量空间 V V V 的一个基,要求 V V V 的一个标准正交基。这也就是要找一组两两正交的单位向量 e 1 , ⋯ , e r \boldsymbol{e}_1,\cdots,\boldsymbol{e}_r e1,⋯,er,使 e 1 , ⋯ , e r \boldsymbol{e}_1,\cdots,\boldsymbol{e}_r e1,⋯,er 与 a 1 , ⋯ , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,⋯,ar 等价。这样一个问题,称为把基 a 1 , ⋯ , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,⋯,ar 标准正交化。
我们可以用以下方法把
a
1
,
⋯
,
a
r
\boldsymbol{a}_1,\cdots,\boldsymbol{a}_r
a1,⋯,ar 标准正交化:取
b
1
=
a
1
b
2
=
a
2
−
[
b
1
,
a
2
]
[
b
1
,
b
1
]
b
1
⋯
⋯
⋯
⋯
b
r
=
a
r
−
[
b
1
,
a
r
]
[
b
1
,
b
1
]
b
1
−
[
b
2
,
a
r
]
[
b
2
,
b
2
]
b
2
−
⋯
−
[
b
r
−
1
,
a
r
]
[
b
r
−
1
,
b
r
−
1
]
b
r
−
1
(1)
\begin{align*} & \boldsymbol{b}_1 = \boldsymbol{a}_1 \\ & \boldsymbol{b}_2 = \boldsymbol{a}_2 - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_2]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 \\ & \cdots \cdots \cdots \cdots \\ & \boldsymbol{b}_r = \boldsymbol{a}_r - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_r]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 - \frac{[\boldsymbol{b}_2,\boldsymbol{a}_r]}{[\boldsymbol{b}_2,\boldsymbol{b}_2]} \boldsymbol{b}_2 - \cdots - \frac{[\boldsymbol{b}_{r-1},\boldsymbol{a}_r]}{[\boldsymbol{b}_{r-1},\boldsymbol{b}_{r-1}]} \boldsymbol{b}_{r-1} \end{align*} \tag{1}
b1=a1b2=a2−[b1,b1][b1,a2]b1⋯⋯⋯⋯br=ar−[b1,b1][b1,ar]b1−[b2,b2][b2,ar]b2−⋯−[br−1,br−1][br−1,ar]br−1(1)
然后把它们单位化,即取
e
1
=
1
∣
∣
b
1
∣
∣
b
1
,
e
2
=
1
∣
∣
b
2
∣
∣
b
2
,
⋯
,
e
r
=
1
∣
∣
b
r
∣
∣
b
r
,
\boldsymbol{e}_1 = \frac{1}{||\boldsymbol{b}_1||} \boldsymbol{b}_1, \hspace{1em} \boldsymbol{e}_2 = \frac{1}{||\boldsymbol{b}_2||} \boldsymbol{b}_2, \hspace{1em} \cdots, \hspace{1em} \boldsymbol{e}_r = \frac{1}{||\boldsymbol{b}_r||} \boldsymbol{b}_r,
e1=∣∣b1∣∣1b1,e2=∣∣b2∣∣1b2,⋯,er=∣∣br∣∣1br,
就是
V
V
V 的一个标准正交基。
上述从线性无关向量组 a 1 , ⋯ , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,⋯,ar 导出正交向量组 b 1 , ⋯ , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,⋯,br 的过程称为施密特正交化。它不仅满足 b 1 , ⋯ , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,⋯,br 与 a 1 , ⋯ , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,⋯,ar 等价,还满足:对任何 k ( 1 ≤ k ≤ r ) k(1 \le k \le r) k(1≤k≤r),向量组 b 1 , ⋯ , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,⋯,br 与 a 1 , ⋯ , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,⋯,ar 等价。
2 施密特正交化证明
证明:向量组 B : b 1 , ⋯ , b r B:\boldsymbol{b}_1,\cdots,\boldsymbol{b}_r B:b1,⋯,br 是正交向量组。
证明 使用数学归纳法。
1:当 n = 1 n=1 n=1 时,根据 ( 1 ) (1) (1) 式,有 [ b 1 , b 2 ] = [ b 1 , a 2 ] − [ b 1 , a 2 ] [ b 1 , b 1 ] [ b 1 , b 1 ] = 0 [\boldsymbol{b}_1, \boldsymbol{b}_2] = [\boldsymbol{b}_1, \boldsymbol{a}_2] - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_2]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]}[\boldsymbol{b}_1, \boldsymbol{b}_1] = 0 [b1,b2]=[b1,a2]−[b1,b1][b1,a2][b1,b1]=0,即 b 1 \boldsymbol{b}_1 b1 与 b 2 \boldsymbol{b}_2 b2 正交。
2:假设当 n = k n = k n=k( 1 < k ≤ r − 1 1 < k \le r-1 1<k≤r−1)时,向量组 b 1 , ⋯ , b k \boldsymbol{b}_1,\cdots,\boldsymbol{b}_k b1,⋯,bk 两两正交。根据 ( 1 ) (1) (1) 式有(其中第 2 行到第 3 行利用了向量组 b 1 , ⋯ , b k \boldsymbol{b}_1,\cdots,\boldsymbol{b}_k b1,⋯,bk 两两正交)
[ b k , b k + 1 ] = [ b k , ( a k + 1 − [ b 1 , a k + 1 ] [ b 1 , b 1 ] b 1 − ⋯ − [ b k − 1 , a k + 1 ] [ b k − 1 , b k − 1 ] b k − 1 − [ b k , a k + 1 ] [ b k , b k ] b k ) ] = [ b k , a k + 1 ] − [ b 1 , a k + 1 ] [ b 1 , b 1 ] [ b k , b 1 ] − ⋯ − [ b k − 1 , a k + 1 ] [ b k − 1 , b k − 1 ] [ b k , b k − 1 ] − [ b k , a k + 1 ] [ b k , b k ] [ b k , b k ] = [ b k , a k + 1 ] − [ b k , a k + 1 ] [ b k , b k ] [ b k , b k ] = 0 \begin{align*} [\boldsymbol{b}_k, \boldsymbol{b}_{k+1}] & = \left[ \boldsymbol{b}_k, \left( \boldsymbol{a}_{k+1} - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 - \cdots - \frac{[\boldsymbol{b}_{k-1},\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_{k-1},\boldsymbol{b}_{k-1}]} \boldsymbol{b}_{k-1} - \frac{[\boldsymbol{b}_k,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_k,\boldsymbol{b}_k]} \boldsymbol{b}_k \right) \right] \\ & = [\boldsymbol{b}_k,\boldsymbol{a}_{k+1}] - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} [\boldsymbol{b}_k,\boldsymbol{b}_1] - \cdots - \frac{[\boldsymbol{b}_{k-1},\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_{k-1},\boldsymbol{b}_{k-1}]} [\boldsymbol{b}_k, \boldsymbol{b}_{k-1}] - \frac{[\boldsymbol{b}_k,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_k,\boldsymbol{b}_k]} [\boldsymbol{b}_k, \boldsymbol{b}_k] \\ & = [\boldsymbol{b}_k,\boldsymbol{a}_{k+1}] - \frac{[\boldsymbol{b}_k,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_k,\boldsymbol{b}_k]} [\boldsymbol{b}_k, \boldsymbol{b}_k] = 0 \end{align*} [bk,bk+1]=[bk,(ak+1−[b1,b1][b1,ak+1]b1−⋯−[bk−1,bk−1][bk−1,ak+1]bk−1−[bk,bk][bk,ak+1]bk)]=[bk,ak+1]−[b1,b1][b1,ak+1][bk,b1]−⋯−[bk−1,bk−1][bk−1,ak+1][bk,bk−1]−[bk,bk][bk,ak+1][bk,bk]=[bk,ak+1]−[bk,bk][bk,ak+1][bk,bk]=0
即 b k \boldsymbol{b}_k bk 与 b k + 1 \boldsymbol{b}_{k+1} bk+1 正交。综上所述,由 1 和 2 可知,当 1 ≤ n ≤ r − 1 1 \le n \le r-1 1≤n≤r−1 时, b n \boldsymbol{b}_n bn 与 b n + 1 \boldsymbol{b}_{n+1} bn+1 正交。因此 b 1 , ⋯ , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,⋯,br 两两正交,即向量组 b 1 , ⋯ , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,⋯,br 是正交向量组。
证明:向量组 B : b 1 , ⋯ , b r B:\boldsymbol{b}_1,\cdots,\boldsymbol{b}_r B:b1,⋯,br 与向量组 A : a 1 , ⋯ , a r A:\boldsymbol{a}_1,\cdots,\boldsymbol{a}_r A:a1,⋯,ar 等价。
证明 根据 ( 1 ) (1) (1) 式,有:
a 1 = b 1 a 2 = [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 − b 2 ⋯ ⋯ ⋯ ⋯ a r = [ b 1 , a r ] [ b 1 , b 1 ] b 1 + [ b 2 , a r ] [ b 2 , b 2 ] b 2 + ⋯ + [ b r − 1 , a r ] [ b r − 1 , b r − 1 ] b r − 1 − b r \begin{align*} & \boldsymbol{a}_1 = \boldsymbol{b}_1 \\ & \boldsymbol{a}_2 = \frac{[\boldsymbol{b}_1,\boldsymbol{a}_2]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 - \boldsymbol{b}_2 \\ & \cdots \cdots \cdots \cdots \\ & \boldsymbol{a}_r = \frac{[\boldsymbol{b}_1,\boldsymbol{a}_r]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 + \frac{[\boldsymbol{b}_2,\boldsymbol{a}_r]}{[\boldsymbol{b}_2,\boldsymbol{b}_2]} \boldsymbol{b}_2 + \cdots + \frac{[\boldsymbol{b}_{r-1},\boldsymbol{a}_r]}{[\boldsymbol{b}_{r-1},\boldsymbol{b}_{r-1}]} \boldsymbol{b}_{r-1} - \boldsymbol{b}_r \end{align*} a1=b1a2=[b1,b1][b1,a2]b1−b2⋯⋯⋯⋯ar=[b1,b1][b1,ar]b1+[b2,b2][b2,ar]b2+⋯+[br−1,br−1][br−1,ar]br−1−br
因为向量组 A A A 中的每个向量都可以由向量组 B B B 线性表示,所以向量组 A A A 可以由向量组 B B B 线性表示。根据 ( 1 ) (1) (1) 式,通过数学归纳法容易验证向量组 B B B 中的每个向量都可以由向量组 A A A 线性表示,所以向量组 B B B 可以由向量组 A A A 线性表示。
综上所述,因为向量组 A A A 可以由向量组 B B B 线性表示且向量组 B B B 可以由向量组 A A A 线性表示,于是向量组 A A A 与向量组 B B B 等价。