线性代数|施密特正交化及其证明

前置知识:


1 施密特正交化过程

a 1 , ⋯   , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,,ar 是向量空间 V V V 的一个基,要求 V V V 的一个标准正交基。这也就是要找一组两两正交的单位向量 e 1 , ⋯   , e r \boldsymbol{e}_1,\cdots,\boldsymbol{e}_r e1,,er,使 e 1 , ⋯   , e r \boldsymbol{e}_1,\cdots,\boldsymbol{e}_r e1,,er a 1 , ⋯   , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,,ar 等价。这样一个问题,称为把基 a 1 , ⋯   , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,,ar 标准正交化。

我们可以用以下方法把 a 1 , ⋯   , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,,ar 标准正交化:取
b 1 = a 1 b 2 = a 2 − [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 ⋯ ⋯ ⋯ ⋯ b r = a r − [ b 1 , a r ] [ b 1 , b 1 ] b 1 − [ b 2 , a r ] [ b 2 , b 2 ] b 2 − ⋯ − [ b r − 1 , a r ] [ b r − 1 , b r − 1 ] b r − 1 (1) \begin{align*} & \boldsymbol{b}_1 = \boldsymbol{a}_1 \\ & \boldsymbol{b}_2 = \boldsymbol{a}_2 - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_2]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 \\ & \cdots \cdots \cdots \cdots \\ & \boldsymbol{b}_r = \boldsymbol{a}_r - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_r]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 - \frac{[\boldsymbol{b}_2,\boldsymbol{a}_r]}{[\boldsymbol{b}_2,\boldsymbol{b}_2]} \boldsymbol{b}_2 - \cdots - \frac{[\boldsymbol{b}_{r-1},\boldsymbol{a}_r]}{[\boldsymbol{b}_{r-1},\boldsymbol{b}_{r-1}]} \boldsymbol{b}_{r-1} \end{align*} \tag{1} b1=a1b2=a2[b1,b1][b1,a2]b1⋯⋯⋯⋯br=ar[b1,b1][b1,ar]b1[b2,b2][b2,ar]b2[br1,br1][br1,ar]br1(1)

然后把它们单位化,即取
e 1 = 1 ∣ ∣ b 1 ∣ ∣ b 1 , e 2 = 1 ∣ ∣ b 2 ∣ ∣ b 2 , ⋯   , e r = 1 ∣ ∣ b r ∣ ∣ b r , \boldsymbol{e}_1 = \frac{1}{||\boldsymbol{b}_1||} \boldsymbol{b}_1, \hspace{1em} \boldsymbol{e}_2 = \frac{1}{||\boldsymbol{b}_2||} \boldsymbol{b}_2, \hspace{1em} \cdots, \hspace{1em} \boldsymbol{e}_r = \frac{1}{||\boldsymbol{b}_r||} \boldsymbol{b}_r, e1=∣∣b1∣∣1b1,e2=∣∣b2∣∣1b2,,er=∣∣br∣∣1br,
就是 V V V 的一个标准正交基。

上述从线性无关向量组 a 1 , ⋯   , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,,ar 导出正交向量组 b 1 , ⋯   , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,,br 的过程称为施密特正交化。它不仅满足 b 1 , ⋯   , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,,br a 1 , ⋯   , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,,ar 等价,还满足:对任何 k ( 1 ≤ k ≤ r ) k(1 \le k \le r) k(1kr),向量组 b 1 , ⋯   , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,,br a 1 , ⋯   , a r \boldsymbol{a}_1,\cdots,\boldsymbol{a}_r a1,,ar 等价。

2 施密特正交化证明

证明:向量组 B : b 1 , ⋯   , b r B:\boldsymbol{b}_1,\cdots,\boldsymbol{b}_r B:b1,,br 是正交向量组。

证明 使用数学归纳法。

1:当 n = 1 n=1 n=1 时,根据 ( 1 ) (1) (1) 式,有 [ b 1 , b 2 ] = [ b 1 , a 2 ] − [ b 1 , a 2 ] [ b 1 , b 1 ] [ b 1 , b 1 ] = 0 [\boldsymbol{b}_1, \boldsymbol{b}_2] = [\boldsymbol{b}_1, \boldsymbol{a}_2] - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_2]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]}[\boldsymbol{b}_1, \boldsymbol{b}_1] = 0 [b1,b2]=[b1,a2][b1,b1][b1,a2][b1,b1]=0,即 b 1 \boldsymbol{b}_1 b1 b 2 \boldsymbol{b}_2 b2 正交。

2:假设当 n = k n = k n=k 1 < k ≤ r − 1 1 < k \le r-1 1<kr1)时,向量组 b 1 , ⋯   , b k \boldsymbol{b}_1,\cdots,\boldsymbol{b}_k b1,,bk 两两正交。根据 ( 1 ) (1) (1) 式有(其中第 2 行到第 3 行利用了向量组 b 1 , ⋯   , b k \boldsymbol{b}_1,\cdots,\boldsymbol{b}_k b1,,bk 两两正交)
[ b k , b k + 1 ] = [ b k , ( a k + 1 − [ b 1 , a k + 1 ] [ b 1 , b 1 ] b 1 − ⋯ − [ b k − 1 , a k + 1 ] [ b k − 1 , b k − 1 ] b k − 1 − [ b k , a k + 1 ] [ b k , b k ] b k ) ] = [ b k , a k + 1 ] − [ b 1 , a k + 1 ] [ b 1 , b 1 ] [ b k , b 1 ] − ⋯ − [ b k − 1 , a k + 1 ] [ b k − 1 , b k − 1 ] [ b k , b k − 1 ] − [ b k , a k + 1 ] [ b k , b k ] [ b k , b k ] = [ b k , a k + 1 ] − [ b k , a k + 1 ] [ b k , b k ] [ b k , b k ] = 0 \begin{align*} [\boldsymbol{b}_k, \boldsymbol{b}_{k+1}] & = \left[ \boldsymbol{b}_k, \left( \boldsymbol{a}_{k+1} - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 - \cdots - \frac{[\boldsymbol{b}_{k-1},\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_{k-1},\boldsymbol{b}_{k-1}]} \boldsymbol{b}_{k-1} - \frac{[\boldsymbol{b}_k,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_k,\boldsymbol{b}_k]} \boldsymbol{b}_k \right) \right] \\ & = [\boldsymbol{b}_k,\boldsymbol{a}_{k+1}] - \frac{[\boldsymbol{b}_1,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} [\boldsymbol{b}_k,\boldsymbol{b}_1] - \cdots - \frac{[\boldsymbol{b}_{k-1},\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_{k-1},\boldsymbol{b}_{k-1}]} [\boldsymbol{b}_k, \boldsymbol{b}_{k-1}] - \frac{[\boldsymbol{b}_k,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_k,\boldsymbol{b}_k]} [\boldsymbol{b}_k, \boldsymbol{b}_k] \\ & = [\boldsymbol{b}_k,\boldsymbol{a}_{k+1}] - \frac{[\boldsymbol{b}_k,\boldsymbol{a}_{k+1}]}{[\boldsymbol{b}_k,\boldsymbol{b}_k]} [\boldsymbol{b}_k, \boldsymbol{b}_k] = 0 \end{align*} [bk,bk+1]=[bk,(ak+1[b1,b1][b1,ak+1]b1[bk1,bk1][bk1,ak+1]bk1[bk,bk][bk,ak+1]bk)]=[bk,ak+1][b1,b1][b1,ak+1][bk,b1][bk1,bk1][bk1,ak+1][bk,bk1][bk,bk][bk,ak+1][bk,bk]=[bk,ak+1][bk,bk][bk,ak+1][bk,bk]=0
b k \boldsymbol{b}_k bk b k + 1 \boldsymbol{b}_{k+1} bk+1 正交。

综上所述,由 1 和 2 可知,当 1 ≤ n ≤ r − 1 1 \le n \le r-1 1nr1 时, b n \boldsymbol{b}_n bn b n + 1 \boldsymbol{b}_{n+1} bn+1 正交。因此 b 1 , ⋯   , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,,br 两两正交,即向量组 b 1 , ⋯   , b r \boldsymbol{b}_1,\cdots,\boldsymbol{b}_r b1,,br 是正交向量组。

证明:向量组 B : b 1 , ⋯   , b r B:\boldsymbol{b}_1,\cdots,\boldsymbol{b}_r B:b1,,br 与向量组 A : a 1 , ⋯   , a r A:\boldsymbol{a}_1,\cdots,\boldsymbol{a}_r A:a1,,ar 等价。

证明 根据 ( 1 ) (1) (1) 式,有:
a 1 = b 1 a 2 = [ b 1 , a 2 ] [ b 1 , b 1 ] b 1 − b 2 ⋯ ⋯ ⋯ ⋯ a r = [ b 1 , a r ] [ b 1 , b 1 ] b 1 + [ b 2 , a r ] [ b 2 , b 2 ] b 2 + ⋯ + [ b r − 1 , a r ] [ b r − 1 , b r − 1 ] b r − 1 − b r \begin{align*} & \boldsymbol{a}_1 = \boldsymbol{b}_1 \\ & \boldsymbol{a}_2 = \frac{[\boldsymbol{b}_1,\boldsymbol{a}_2]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 - \boldsymbol{b}_2 \\ & \cdots \cdots \cdots \cdots \\ & \boldsymbol{a}_r = \frac{[\boldsymbol{b}_1,\boldsymbol{a}_r]}{[\boldsymbol{b}_1,\boldsymbol{b}_1]} \boldsymbol{b}_1 + \frac{[\boldsymbol{b}_2,\boldsymbol{a}_r]}{[\boldsymbol{b}_2,\boldsymbol{b}_2]} \boldsymbol{b}_2 + \cdots + \frac{[\boldsymbol{b}_{r-1},\boldsymbol{a}_r]}{[\boldsymbol{b}_{r-1},\boldsymbol{b}_{r-1}]} \boldsymbol{b}_{r-1} - \boldsymbol{b}_r \end{align*} a1=b1a2=[b1,b1][b1,a2]b1b2⋯⋯⋯⋯ar=[b1,b1][b1,ar]b1+[b2,b2][b2,ar]b2++[br1,br1][br1,ar]br1br
因为向量组 A A A 中的每个向量都可以由向量组 B B B 线性表示,所以向量组 A A A 可以由向量组 B B B 线性表示。

根据 ( 1 ) (1) (1) 式,通过数学归纳法容易验证向量组 B B B 中的每个向量都可以由向量组 A A A 线性表示,所以向量组 B B B 可以由向量组 A A A 线性表示。

综上所述,因为向量组 A A A 可以由向量组 B B B 线性表示且向量组 B B B 可以由向量组 A A A 线性表示,于是向量组 A A A 与向量组 B B B 等价。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值