【线代&NumPy】第十章 - 正交性课后练习 | 施密特正交化 | QR分解法 | 简述并提供代码

34 篇文章 90 订阅 ¥29.90 ¥99.00


💬 例1:

 

import numpy as np

# 打印A
def pprint(msg, A):
    print("---", msg, "---")
    (n,m) = A.shape
    for i in range(0, n):
        line = ""
        for j in range(0, m):
            line += "{0:.2f}".format(A[i,j]) + "\t"
        print(line)
    print("")
    
# 施密特 由A的逆向量单位向量组成直交基底。
def gramSchmidt(A):
    basis = []
    for v in A.T:
        w = v - sum(np.dot(v,b)*b for b in basis )
        if (np.abs(w) > 1e-10).any():
            basis.append(w/np.linalg.norm(w))
    return np.array(basis).T

print("利用施密特的的直交基底\n")
A = np.array([[3, 1], [2, 2]])
pprint("逆向量", A)
pprint("直交基底", gramSchmidt(A))

B = np.array([[1, 1, 0], [1, 3, 1], [2, -1, 1]])
pprint("逆向量", B)
pprint("直交
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
当然可以!下面是在上述代码基础上补充使用施密特正交化来找正交基,并计算参数的代码示例: ```python import numpy as np import matplotlib.pyplot as plt def schmidt_orthogonalization(X): Q, R = np.linalg.qr(X) return Q def polynomial_chaos_expansion(data, degree): # 计算多项式系数 n = len(data) X = np.vander(data, degree + 1, increasing=True) Q = schmidt_orthogonalization(X) A = np.linalg.inv(Q.T @ Q) @ Q.T # 混沌展开 chaos_expansion = np.zeros(n) for i in range(degree + 1): chaos_expansion += A[i] * Q[:, i] return chaos_expansion # 生成随机数据 np.random.seed(0) data = np.linspace(-1, 1, 100) noise = np.random.normal(0, 0.1, 100) y = np.sin(np.pi * data) + noise # 使用3次多项式进行混沌展开 degree = 3 chaos_expansion = polynomial_chaos_expansion(data, degree) # 绘制结果 plt.scatter(data, y, label='Data') plt.plot(data, chaos_expansion, color='red', label='Chaos Expansion') plt.legend() plt.show() ``` 在上述代码中,补充了一个函数 `schmidt_orthogonalization` 来进行施密特正交化。具体步骤如下: 1. 定义了一个函数 `schmidt_orthogonalization`,该函数接受一个矩阵 `X` 作为输入。 2. 在函数内部,利用 `np.linalg.qr` 函数对矩阵 `X` 进行 QR 分解,得到正交矩阵 `Q` 和上三角矩阵 `R`。 3. 返回正交矩阵 `Q`,即正交基。 在 `polynomial_chaos_expansion` 函数中,将原先计算多项式系数的部分替换为施密特正交化的过程: 1. 在函数内部,根据输入的数据 `data` 和展开的次数 `degree`,使用 Vandermonde 矩阵构建了一个线方程组 `X`。 2. 调用 `schmidt_orthogonalization` 函数对矩阵 `X` 进行施密特正交化,得到正交基 `Q`。 3. 利用正交基 `Q` 计算多项式系数 `A`。 4. 根据计算得到的多项式系数和正交基,计算混沌展开的结果。 请注意,施密特正交化可以用于将原始多项式基函数转换为正交基函数,从而避免了多项式之间的线相关。这样可以更好地表示数据,并且可以减少计算量。在上述代码中,通过施密特正交化得到了正交基函数,并使用这些基函数进行混沌展开。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平渊道人

喜欢的话可以支持下我的付费专栏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值