线性代数|证明:对称矩阵特征方程k重根恰有k个线性无关的特征向量

前置定理 1 设 A \boldsymbol{A} A n n n 阶对称矩阵,则必有正交矩阵 P \boldsymbol{P} P,使 P − 1 A P = P T A P = Λ \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} = \boldsymbol{P}^T \boldsymbol{A} \boldsymbol{P} = \boldsymbol{\Lambda} P1AP=PTAP=Λ,其中 Λ \boldsymbol{\Lambda} Λ 是以 A \boldsymbol{A} A n n n 个特征值为对角元的对角矩阵。

前置定理 2 若可逆矩阵 P \boldsymbol{P} P Q \boldsymbol{Q} Q 使 P A Q = B \boldsymbol{P} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} PAQ=B,则 R ( A ) = R ( B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) R(A)=R(B)

证明见 “矩阵的秩的性质”。


推论 1 设 A \boldsymbol{A} A n n n 阶对称矩阵, λ \lambda λ A \boldsymbol{A} A 的特征方程的 k k k 重根,则矩阵 A − λ E \boldsymbol{A} - \lambda \boldsymbol{E} AλE 的秩 R ( A − λ E ) = n − k R(\boldsymbol{A} - \lambda \boldsymbol{E}) = n - k R(AλE)=nk,从而对应特征值 λ \lambda λ 恰有 k k k 个线性无关的特征向量。

证明 根据前置定理 1 可知,对称矩阵 A \boldsymbol{A} A 与对角矩阵 Λ = diag ⁡ ( λ 1 , ⋯   , λ n ) \boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1,\cdots,\lambda_n) Λ=diag(λ1,,λn) 相似,从而有 A − λ E \boldsymbol{A} - \lambda \boldsymbol{E} AλE Λ − λ E = diag ⁡ ( λ 1 − λ , ⋯   , λ n − λ ) \boldsymbol{\Lambda} - \lambda \boldsymbol{E} = \operatorname{diag}(\lambda_1 - \lambda, \cdots, \lambda_n - \lambda) ΛλE=diag(λ1λ,,λnλ) 相似。

λ \lambda λ A \boldsymbol{A} A k k k 重根时, λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn n n n 个特征值中有 k k k 个等于 λ \lambda λ,有 n − k n-k nk 个不等于 λ \lambda λ,从而对角矩阵 Λ − λ E \boldsymbol{\Lambda} - \lambda \boldsymbol{E} ΛλE 中的对角元恰有 k k k 个等于 0 0 0,于是 R ( Λ − λ E ) = n − k R(\boldsymbol{\Lambda} - \lambda \boldsymbol{E}) = n - k R(ΛλE)=nk

根据前置定理 2,因为对称矩阵 A \boldsymbol{A} A 与对角矩阵 Λ = diag ⁡ ( λ 1 , ⋯   , λ n ) \boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1,\cdots,\lambda_n) Λ=diag(λ1,,λn) 相似,所以 R ( A − λ E ) = R ( Λ − λ E ) = n − k R(\boldsymbol{A} - \lambda \boldsymbol{E}) = R(\boldsymbol{\Lambda} - \lambda \boldsymbol{E}) = n - k R(AλE)=R(ΛλE)=nk。得证。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值