[补充]特征值 特征向量


  • 配图

  1. 不同的特征值的特征向量一定线性无关,普通矩阵特征值相同的特征向量可能线性相关,也可能线性无关,实对称矩阵特征值相同的特征向量线性无关。

  2. k重特征值至多只有k个线性无关的特征向量(也可能没有的)

  3. 定理三描述的是:以特征值为λ的特征向量(基本属性-能量相同)作为基础解析,来表示符合特征值为λ的所有特征向量(方向不同)

  4. 矩阵A(n阶)满足有n个线性无关的特征向量(⚐每个ki重特征值都有ki个线性无关的特征向量),即可相似对角化。特征值可以不全相同,因为相同的特征值的特征向量可以线性无关,但是有n个不同的特征值时,满足了不同特征值的特征向量线性无关,所以是充分条件,而非必要条件。
    ⚐:换言之就是特征值相同的特征向量是线性无关的

  5. 实对称矩阵必相似于对角矩阵,因为必可相似对角化,但可相似对角化不能推出矩阵是实对称矩阵,因为n个线性无关的特征向量不能保证红色部分的特征向量存在,即不能保证不同特征值的特征向量线性无关。


  • 辅助理解

根据特征向量数学公式定义,A ξ = λ ξ,矩阵乘以一个向量的结果仍是同维数的一个向量,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,除了零向量,有没有其他向量可以在向量空间变换完不改变方向的?(注意:特征向量不能是零向量)

所以一个变换的特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已。

特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向是很重要的,特征值似乎不是那么重要;但是,引用了谱定律的时候,情况就不一样了。

其核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是:

从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率—说通俗一点就是能量,特征值掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握在我手中。

一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,可以想象就是一个空间张开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量(可以想象成从各个角度上伸出的长短)。


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值