【tensorflow:实战Google深度学习框架】读后感

书本代码:https://gitee.com/fraternalkevin/TensorflowGoogle

自己是从一个只会C语言和Matlab的别的专业转过来的,第一次接触神经网络还是在课堂中,说是使用python这个最简单的编程语言来写的。因为自己当时很迷茫,我到底是学习C++还是JAVA呢,毕竟C++和JAVA已经活了很多年,仍然屹立不倒。之后发现python已经大伙了,才开始下定决心学习python,接着就是tensorflow。

我当初学习神经网络直接看的视频就是吴恩达教授的深度学习视频,边学习边做笔记,记录了一大堆公式,还好自己数学功底功底不是很差,然后我就跟着一步一步的推导,一步一步前进,一个视频看不懂我就多看几次。我是真的通过吴恩达教授的视频步步推导的,前期真的很难,往往总是会陷入维度中不解。后来看的多了,推导的多了,我也就发现我自己都已经记住了,后来因为工作需要,给另一个外校的同学讲了一下。我自己拿起以前的笔记重新整理了思路之后发现原来我已经掌握了。我当时很高兴。然后我开始自己编写关于全连接神经网络,我在百度上找代码,就算是softmax函数都是自己写的,梯度下降算法。这个过程让我开始接触python同时也加深了我对全连接神经网络中算法推导。之后我接触到了tensorflow,开始使用tensorflow的框架来编写神经网络。开启了我按照书中所讲亦步亦趋的过程。

根据书本中的tensorflow的讲解,我对张量,张量的shape感到头疼。你根本就知道原来(4,)表示的是一维张量,里面有四个数。我对此表示真的是很难受。但是因为每个都是这样,你也不得不接受。渐入佳境是在我真正开始自己写代码的时候,开始理解了整个过程,从此之后我在看代码,我都可以整体把握代码代码的思想,看VGG,GoogleNet等一目了然,而且一下子就可以写出来。我开始思考我的数据集应该怎么制作的过程,刚刚开始我用的是tfrecord,之后发现tfrecord的缺陷, 决定不这么麻烦了直接采用npz的形式,这样使得你的代码不这么麻烦,也更加整洁,再之后就是直接读取文件(tf.Dataset)。对于RNN来说,我倾向与使用keras但是keras的封闭性太强了,好多tensorflow中的东西都被隔离了,于是我又从keras转移到了tensorflow。对RNN的使用中我用的是自然语言处理(NLP),在NLP中,词间隔的地方需要使用Ubuntu,好多博客中没有指出,我在我的博客中已经指明。 可以按照我的步骤实现词间隔把每个词分开。

在学习tensorflow中,我又同时学习了李航的机器学习,我是真的一个公式一个公式推导的。李航的那本统计学习方法,真的是特别好,如果说西瓜书是一本让你了解其大概过程,给你一个一目了然的感觉,那个李航就是管中窥豹,一针见血。当然了最后可以跟着代码来学习机器学习,我的GitHub中已经Fork大神的代码。之后我跟着莫烦大神学习了深度强化学习,不能说自己全部理解,但是也差不多,看公式还是可以看得懂的。莫烦大神代码也已经开源。在GitHub中可以找得到。

有空可以看看我的代码,虽说不是尽善尽美吧,但是好多源代码是可以从我的这个地方找到的。我的GitHub地址https://github.com/ChaoflyLi,我的码云地址https://gitee.com/fraternalkevin/projects

我的代码有一部分是从GitHub中知道导入到Gitee了,通过Gitee下载速度比加快。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值