tf.contact()
数据连接
axis = 0,相当于增加样本数,第一个维度中数据变多
axis = 1,相当于增加第二个维度的特征数,第二个维度中数据变多
axis = 2,相当于增加第三个维度的特征数,第三个维度中数据变多
import tensorflow as tf
import numpy as np
t1 = [[1, 2, 3], [4, 5, 6]]
print(np.shape(np.array(t1)))
t2 = [[7, 8, 9], [10, 11, 12]]
print(tf.concat([t1, t2], 0))
# [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
print(tf.concat([t1, t2], 1))
# [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
print(np.shape(np.array(t1)))
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
print(tf.concat([t1, t2], 2))
'''
[[[1, 2, 7, 4],
[2, 3, 8, 4]],
[[4, 4, 2, 10],
[5, 3, 15, 11]]]
'''
tf.stack(values, axis=0, name="stack")
tf.concat
拼接的是除了拼接维度axis外其他维度的shape完全相同的张量,并且产生的张量的阶数不会发生变化,而tf.stack
则会在新的张量阶上拼接,产生的张量的阶数将会增加
给出N个张量,并且每个张量的shape是(A, B, C)
如果axis == 0,则tf.stack的输出为(N, A, B, C)
如果axis == 1,则tf.stack的输出为(A, N, B, C)
原文是:
Given a list of length `N` of tensors of shape `(A, B, C)`;
if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`.
t1 = [[1, 2, 3], [4, 5, 6]]
print(np.shape(np.array(t1)))
t2 = [[7, 8, 9], [10, 11, 12]]
t3 = [[7, 8, 9], [10, 11, 12]]
sess = tf.Session()
print(sess.run(tf.concat([t1, t2, t3], 0)))
print(tf.concat([t1, t2, t3], 0))
print(sess.run(tf.stack([t1, t2, t3], axis=0)))
print(tf.stack([t1, t2, t3], axis=0))
而tf.unstack
与tf.stack
的操作相反,是将一个高阶数的张量在某个axis上分解为低阶数的张量
t1 = [[1, 2, 3], [4, 5, 6]]
print(np.shape(np.array(t1)))
t2 = [[7, 8, 9], [10, 11, 12]]
t3 = [[13, 14, 15], [16, 17, 18]]
sess = tf.Session()
print(sess.run(tf.concat([t1, t2, t3], 0)))
print(tf.concat([t1, t2, t3], 0))
stack = tf.stack([t1, t2, t3], axis=0)
print(sess.run(stack))
print(stack)
unstack = tf.unstack(stack)
print(unstack)
print(sess.run(unstack))
#[<tf.Tensor 'unstack:0' shape=(2, 3) dtype=int32>, <tf.Tensor 'unstack:1' shape=(2, 3) dtype=int32>, <tf.Tensor 'unstack:2' shape=(2, 3) dtype=int32>]
tf.gather()
类似于数组的索引,可以把向量中某些索引值提取出来,得到新的向量,适用于要提取的索引为不连续的情况。这个函数似乎只适合在一维的情况下使用。
import tensorflow as tf
a = tf.Variable([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]])
index_a = tf.Variable([0, 2])
b = tf.Variable([0,1, 2, 3, 4, 5, 6, 7, 8, 9])
index_b = tf.Variable([2, 4, 6, 8])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(tf.gather(a, index_a)))
print(sess.run(tf.gather(b, index_b)))
'''
[[ 1 2 3 4 5]
[11 12 13 14 15]]
'''
'''
[2 4 6 8]
'''
tf.gather_nd(params, indices, name=None)
效果同上,只不过适用于多维数据,就是相当于indices(坐标点)是用来索引params的某个坐标点数据
import tensorflow as tf
a = tf.Variable([[0,1, 2, 3, 4], [5,6, 7, 8, 9]])
index_a = tf.Variable([[0, 2], [0, 4], [1, 1]])
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(tf.gather_nd(a, index_a)))
# [2 4 6]
tf.cast(x, dtype, name=None)
数据类型转换
a = tf.constant([0, 1, 2, 3], dtype='int32')
print(a)
#Tensor("Const:0", shape=(4,), dtype=int32)
b = tf.cast(a, 'float32')
print(b)
# Tensor("Cast:0", shape=(4,), dtype=float32)
tf.expand_dims(input, axis=None, name=None, dim=None)
增加张量的维度
tf.squeeze(input, axis=None, name=None, squeeze_dims=None)
压缩张量的维度
a = tf.constant([0, 1, 2, 3], dtype='int32')
print(a)
# Tensor("Const_1:0", shape=(4,), dtype=int32)
b = tf.expand_dims(a, 0)
print(b)
# Tensor("ExpandDims:0", shape=(1, 4), dtype=int32)
print(tf.squeeze(b, 0))
# Tensor("Squeeze:0", shape=(4,), dtype=int32)