实战教程 | 车道线检测项目实战,霍夫变换 & 新方法 Spatial CNN

本文介绍了车道线检测的两种方法,包括霍夫变换和Spatial CNN。首先,通过霍夫变换实现车道线检测,详细阐述了算法步骤,包括边缘检测、非最大抑制和霍夫变换。接着,探讨了Spatial CNN的优势,它利用空间信息增强车道检测的准确性。文章提供了相关学习资源和实战项目的链接,适合机器学习和计算机视觉爱好者。
摘要由CSDN通过智能技术生成

点击上方“迈微AI研习社”,选择“星标★”公众号

重磅干货,第一时间送达

此文按照这样的逻辑进行撰写。分享机器学习、计算机视觉的基础知识,接着我们以一个实际的项目,带领大家自己动手实践。最后,分享更多学习资料、进阶项目实战,这部分属于我CSDN上的专栏,最后会按照顺序给出相应的链接,供大家选择学习。

理论篇:算法基础(可选择后看)

本专栏所涉及的项目所需机器学习/图像处理知识并不深入,但我之前在CSDN也开设了《机器学习算法讲解与Python实现》《计算机视觉前沿论文研读》两个专栏。一个更偏算法理论,一个则关注于计算机视觉顶会的前沿论文成果,解读新的方法和Idea。

《机器学习算法讲解与Python实现》

该专栏分类讲解机器学习算法原理,深度解析决策树、贝叶斯算法、逻辑回归、梯度下降、集成学习、k最近邻、支持向量机等,并给出Python实现源程序࿰

课程导语:    人工智能可谓是现阶段最火的行业,在资本和技术协同支持下正在进入高速发展期。当今全球市值前五大公司都指向同一发展目标:人工智能。近几年,人工智能逐渐从理论科学落地到现实中,与生活越来越息息相关,相关的各种职位炙手可热,而深度学习更是人工智能无法绕开的重要一环。 从AlphaGo打败李世石开始,深度学习技术越来越引起社会各界的广泛关注。不只学术界,甚至在工业界也取得了重大突破和广泛应用。其中应用最广的研究领域就是图像处理和自然语言处理。而要入门深度学习,CNN和RNN作为最常用的两种神经网络是必学的。网上关于深度学习的资料很多,但大多知识点分散、内容不系统,或者以理论为主、代码实操少,造成学员学习成本高。本门课程将从最基础的神经元出发,对深度学习的基础知识进行全面讲解,帮助大家迅速成为人工智能领域的入门者,是进阶人工智能深层领域的基石。 讲师简介:赵辛,人工智能算法科学家。2019年福布斯科技榜U30,深圳市海外高层次人才(孔雀人才)。澳大利亚南威尔士大学全奖博士,SCI收录其发表过的10篇国际期刊学术文章。曾任深圳市微埃智能科技有限公司联合创始人。CSDN人工智能机器学习、深度学习方向满分级精英讲师。授课风格逻辑严谨、条理清晰、循序渐进、循循善诱,化枯燥为如沐春风,所教学生人数过万。 课程设计: 本课程分为5大模块,19小节,共计540时长(约9小时): 第一部分,课程介绍、目标与内容概览。主要学习人工智能深度学习应用场景;熟悉深度学习主流技术;掌握使用keras解决深度学习主要问题(神经网络卷积神经网络、循环神经网络),以及深度学习主要内容:神经网络卷积神经网络、循环神经网络;案例简介。 第二部分,深度学习之多层感知器(MLP)。主要学习多层感知器(MLP);MLP实现非线性分类;深度学习实战准备;Python调用keras实现MLP。 MLP技术点实战案例:第三部分,深度学习之卷积神经网络(CNN)。主要学习卷积神经网络CNN模型分析;主流CNN模型; Python调用keras实现CNN; CNN技术点实战案例:第四部分,深度学习之循环神经网络(RNN)。主要学习循环神经网络;RNN模型分析;Python调用keras实现RNN。 RNN技术点实战案例: 第五部分,综合提升。主要进行迁移学习;混合模型;实战准备+综合实战,以及最后进行课程内容总结。 混合模型技术点实战案例
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Charmve

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值