机器学习丨如何理解正定矩阵和半正定矩阵

本文介绍了正定矩阵和半正定矩阵的概念,它们在二次函数的多维扩展中扮演的角色,以及如何通过特征值和主子式来判断一个矩阵是否属于这两类矩阵。正定矩阵要求所有特征值为正,所有主子式也为正;半正定矩阵则要求特征值非负,主子式非负。这两种矩阵在数学和工程领域中有广泛应用。
摘要由CSDN通过智能技术生成

转自:https://www.cnblogs.com/marsggbo/p/11461155.html

  • 正定矩阵(PD):

给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 X,有 XTAX>0 恒成立,则矩阵 A 是一个正定矩阵。

  • 半正定矩阵(PSD)

给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 X,有 XTAX≥0 恒成立,则矩阵 A 是一个半正定矩阵。

仔细看一下上面的定义可以看到两种矩阵的唯一区别就是正定要求是大于0,而半正定要求大于等于0。这个是不是很像二次函数y=ax2:
当a>0时, y>0;
当a≥0时,y≥0。
其实我们可以把y=XTAX看作是y=ax2的多维扩展表达式,我们所说的正定矩阵就是希望矩阵A能够起到a>0的效果,半正定就是希望有一个矩阵A能够起到像a≥0的效果

  • 判断一个矩阵是否为正定矩阵有两种方法:

1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值