转自:https://www.cnblogs.com/marsggbo/p/11461155.html
- 正定矩阵(PD):
给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 X,有 XTAX>0 恒成立,则矩阵 A 是一个正定矩阵。
- 半正定矩阵(PSD)
给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 X,有 XTAX≥0 恒成立,则矩阵 A 是一个半正定矩阵。
仔细看一下上面的定义可以看到两种矩阵的唯一区别就是正定要求是大于0,而半正定要求大于等于0。这个是不是很像二次函数y=ax2:
当a>0时, y>0;
当a≥0时,y≥0。
其实我们可以把y=XTAX看作是y=ax2的多维扩展表达式,我们所说的正定矩阵就是希望矩阵A能够起到a>0的效果,半正定就是希望有一个矩阵A能够起到像a≥0的效果
- 判断一个矩阵是否为正定矩阵有两种方法:
1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。