机器学习丨如何理解正定矩阵和半正定矩阵

本文介绍了正定矩阵和半正定矩阵的概念,它们在二次函数的多维扩展中扮演的角色,以及如何通过特征值和主子式来判断一个矩阵是否属于这两类矩阵。正定矩阵要求所有特征值为正,所有主子式也为正;半正定矩阵则要求特征值非负,主子式非负。这两种矩阵在数学和工程领域中有广泛应用。
摘要由CSDN通过智能技术生成

转自:https://www.cnblogs.com/marsggbo/p/11461155.html

  • 正定矩阵(PD):

给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 X,有 XTAX>0 恒成立,则矩阵 A 是一个正定矩阵。

  • 半正定矩阵(PSD)

给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 X,有 XTAX≥0 恒成立,则矩阵 A 是一个半正定矩阵。

仔细看一下上面的定义可以看到两种矩阵的唯一区别就是正定要求是大于0,而半正定要求大于等于0。这个是不是很像二次函数y=ax2:
当a>0时, y>0;
当a≥0时,y≥0。
其实我们可以把y=XTAX看作是y=ax2的多维扩展表达式,我们所说的正定矩阵就是希望矩阵A能够起到a>0的效果,半正定就是希望有一个矩阵A能够起到像a≥0的效果

  • 判断一个矩阵是否为正定矩阵有两种方法:

1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。
2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

UKF(Unscented Kalman Filter)是一种用于非线性系统状态估计的滤波器,SOC(Second-Order Cone)是凸优化中的一个重要概念,半正定矩阵则是与这两种概念相关的一种特殊类型的矩阵。 UKF是一种基于卡尔曼滤波的高阶扩展滤波器。它通过将非线性函数用无偏采样点来近似,以避免对状态变量进行线性化处理。UKF利用一组在状态空间中均匀分布的采样点,通过传播这些点和权重进行状态预测和更新,从而实现对非线性系统的较好估计。 SOC也称为齐次二次锥,是指在欧几里得空间中刻画的一种几何对象。SOC具有一些重要的几何性质,可用于表示二次约束条件。在凸优化中,SOC被广泛应用于各种优化问题中,包括线性规划和正定规划等。 半正定矩阵是一种特殊的对称矩阵,其所有特征值都非负。在线性代数和凸优化中,半正定矩阵具有许多重要属性和应用。例如,在正定规划中,目标函数和约束条件的矩阵都可以是半正定矩阵。此外,半正定矩阵还用于信号处理、机器学习、最优化等领域。 综上所述,UKF SOC半正定矩阵是三个不同领域的概念。UKF是一种非线性系统状态估计的滤波器,SOC是一种几何对象,可以用于表示二次约束条件和应用于优化问题,半正定矩阵是一种具有非负特征值的特殊矩阵。它们在各自领域都有重要的理论基础和实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值