这是一篇题解,显然这很粗糙,但这不重要,你能看懂就行。
题意
输入两个长度相同的数列,求这两个数列的最长的公共子序列的长度。
思路
1.50分代码
我们发现有50%的样例n≤5000,所以我们可以写一个最简单的做法拿到这50分。
首先设一个dp数组
int dp[6000][6000];
我们把dp[i][j]的含义定为a数组前i个数,b数组前j个数的最长公共子序列的长度。
这时,我们发现状态转移有两种情况
(1)a[i]!=a[j]
我们需要将dp[i][j]取dp[i-1][j]和dp[i][j-1]中的最大值。
(2)a[i]==a[j]
我们取dp[i][j]本身和dp[i-1][j-1]+1中较大的一个。
以上两种写下来就是这个:
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if(a[i]==b[j])
{
dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
}
最后输出的是dp[n][n]也就是a数组与b数组的最长公共子序列的长度。
但这个做法也有局限性,首先时间复杂度是,n一大就超时,更何况数组也开不下。
所以我们来介绍一下满分代码。
50分:
#include<bits/stdc++.h>
using namespace std;
#define N 6000
int a[N];
int b[N];
int dp[N][N];
int n;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++)
{
scanf("%d",&b[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if(a[i]==b[j])
{
dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
}
}
}
printf("%d",dp[n][n]);
return 0;
}
2.满分代码
思路(可能讲的不太清楚):我们将a数组从1~n依次排上序号存在x数组中,再将b数组排上对应的序号存在y数组中,这时x数组一定是严格的递增的,所以我们求最长公共子序列,就只需求y数组中的最长上升子序列了。因为这个最长上升子序列一定在x数组中存在。
#include<bits/stdc++.h>
using namespace std;
int n;
int m;
int ans;
int A[1000010];//a数组
int B[1000010];//b数组
int b[1000010];//用于求最长上升子序列
int X[1000010];//a数组所对应的序号
int Y[1000010];//b数组所对应的序号
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&A[i]);
X[A[i]]=i;
}
for(int i=1;i<=n;i++)
{
scanf("%d",&B[i]);
Y[i]=X[B[i]];//把b数组也对应上相对的序号
}
for(int i=1;i<=n;i++)//查找y数组里的最长上升子序列
{
int L=1;
int R=ans+1;
while(L<R)
{
int mid=(L+R)/2;
if(b[mid]>=Y[i])
{
R=mid;
}
else
{
L=mid+1;
}
}
ans=max(ans,R);
b[R]=Y[i];
}
printf("%d",ans);
return 0;
}
重点词意
1.子序列:通俗理解为可以通过去除一个数列或字符串中的一些值或字符从而得到的一串数或一个字符串被称为子序列,而这些数或字符在原数列或字符串中不一定连续。(注意:这里的描述只是便于理解,与题目本身做法没有太大关联,或者说没有关联)。
如:原数列:1 2 3 4 5
子序列:1 3 5或1 2 5 或1 4 5
2.子串:与子序列不同的是,子串可以理解为是原数列或字符串中一串连续的数或字符所构成的数列或字符串。
如:原数列:1 2 3 4 5
子串:1 2或3 4 5或1 2 3 4
3.公共子序列:在两个数列或字符串中同为子序列的序列。
这篇文章介绍了如何使用动态规划解决两个数列的最长公共子序列问题。首先给出了一个基础的50分解决方案,即通过二维DP数组进行状态转移。然后,文章提出了一个优化的满分方案,通过排序和最长上升子序列来降低时间复杂度和空间复杂度。
998

被折叠的 条评论
为什么被折叠?



