作为图论模型与方法的第三部分,本文将介绍一些图论建模方法以及现实中的经典应用问题。
一.图的着色问题
1.1 着色问题及其推广
四色问题
给定一张地图,是否可以用四种颜色对任何共享共同边界(边界长度大于0)的两个地区指派不同的颜色?
将每个地区视作一个“点”, 若两个地区用共同边界,则将代表这两个地区的“点”用直线相连,则四色问题可以重述为:
四色问题(重述)
能否利用四种颜色对一个边没有交叉的图的顶点着色使得没有相邻的顶点会有相同的颜色?
四色问题实际上是更一般的图着色问题的一种特殊情形:给定一个图,求对顶点适当着色所需要的最少数目的颜色。
图着色的应用:期末考试时间安排问题
假设某所大学要考n门课程,学校希望在避免“冲突”的同时,所用的考试时间段段数最少。当一个学生被安排在同一时间考两门课程时,冲突就发生了。可以用图对这个问题建模:
我们从给每门课程创建一个顶点,若有学生同时选了某两个顶点对应的课程,就在这两个顶点之间画一条边。即以如上方式给所得到的图着色,使得所用颜色最少。
1.2 着色问题部分解决方法
1.2.1 Welch Powell方法
1.2.2 转化整数规划模型
参考:图与网络04—着色问题与旅行商问题_显然易证的博客-CSDN博客_边着色问题
二.顶点覆盖问题
2.1 顶点覆盖问题
顶点覆盖问题
给定一个图G=(V(G), E(G)), 顶点覆盖问题就是要寻找一个成员数目最小的子集S∈V(G),使得图中每条边与S中至少一个成员关联
说边e与顶点v关联,如果e的一个端点就是v
2.2 顶点覆盖问题部分解决方法
2.2.1 整数规划模型
令S表示最小顶点覆盖顶点集,设:
考虑与顶点4和5关联的边,这条边的存在要求或者等于1,即
但是其为非线性的。转化为:
同样的做法用于该图所有边,则有:
目标函数:
2.2.2 分支定界+贪心
参考: