一、采用U-Net网络结构
三大优点:支持小数量的数据训练模型;通过每个像素的分类得到更高的分割精度;训练模型更快。
二、对比损失函数
A.Binary Cross Entropy(BCE)
当正样本数远小于负样本数时(血管的像素数远小于背景像素数,约为1:9),模型很难分割出血管。
B.Dice Loss
Dice similarity coeffcient(DSC)表示两个轮廓区域的相似程度。
Dice适用于感兴趣区域只占一小部分的图像。(正负样本不平衡的分类任务)
Dice是在评估标准中进行优化的,所以有时训练曲线并不真实,原因是太少的真实标签和预测标签会导致梯度显著性的变化,最后训练困难,所以一个好的Dice损失模型不会再其他的评估标准上表现良好。
C.Focal Loss
Focal Loss是在目标检测领域推出,主要是解决正负样本不平衡的问题。
Focal Loss更多地关注难分类的样本,较少的关注易分类的样本。
Focal Loss很容易过拟合,损失值很大,不容易调整。
D.Combined Loss
1、Combination of Focal Loss and Dice Loss
Focal Loss和Dice Loss的结合需要注意将两者缩放到相同的数量级上,Focal Loss非常大,有成百上千,但是Dice Loss非常小,几乎小于1。
β设为0.001
2、Combination of BCE Loss and Dice Loss
BCE Loss和Dice Loss在相同的数量级上,可以直接相加。