关于熵的证明练习

在"信息理论与编码"课程中,通过华副院长的讲解,深入学习了熵(Entropy)的概念及其性质。条件熵H(X|Y)表示在已知Y的情况下X剩余的信息量。在解决证明两个条件熵大小的练习时,通过解释熵和条件熵的直观含义,以及利用平均互信息I(X;Y)的性质,成功完成了证明。这个过程强调了信息量度的理解对于解决此类问题的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个学期有一门叫做“信息理论与编码”的课程,上课老师是我们学院的副院长,姓华,他不幽默,但是课程内容安排得很有条理,一层一层深入,最后有总结和随堂复习题,3节课下来学到很多。

这个星期一的晚上是本学期的第2次课,讲起了entropy(熵),用符号 H 来表示,及其性质,课后的练习题里来了这么一道题目:

H(X3|X1X2)H(X3|X1)

这是两个条件熵的比较,要证明首先要了解条件熵是什么意思,我们先来看张图:
熵的图解

熵是一种信息的量度,条件熵 H(X|Y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值