狂肝两万字带你用pytorch搞深度学习!!!

深度学习

基础知识和各种网络结构实战 ...

前言

学习深度学习一个好的框架十分的重要,现在主流的就是Pytorch和tf,今天让我们一起来学习pytorch

在这里插入图片描述

一、基本数据:Tensor

Tensor,即张量,是PyTorch中的基本操作对象,可以看做是包含单一数据类型元素的多维矩阵。从使用角度来看,Tensor与NumPy的ndarrays非常类似,相互之间也可以自由转换,只不过Tensor还支持GPU的加速。
在这里插入图片描述

1.1 Tensor的创建

在这里插入图片描述

1.2 torch.FloatTensor

torch.FloatTensor用于生成数据类型为浮点型的Tensor,传递给torch.FloatTensor的参数可以是列表,也可以是一个维度值。

import torch
a = torch.FloatTensor(2,3)
b = torch.FloatTensor([2,3,4,5])
a,b

得到的结果是:

(tensor([[1.0561e-38, 1.0102e-38, 9.6429e-39],
         [8.4490e-39, 9.6429e-39, 9.1837e-39]]),
 tensor([2., 3., 4., 5.]))

1.3 torch.IntTensor

torch.IntTensor用于生成数据类型为整型的Tensor,传递给传递给torch.IntTensor的参数可以是列表,也可以是一个维度值。

import torch
a = torch.IntTensor(2,3)
b = torch.IntTensor([2,3,4,5])
a,b

在这里插入图片描述

import torch
a = torch.rand(2,3)
a 

得到:

tensor([[0.5625, 0.5815, 0.8221],
        [0.3589, 0.4180, 0.2158]])

1.4 torch.randn

用于生成数据类型为浮点数且维度指定的随机Tensor,和在numpy中使用的numpy.randn生成的随机数的方法类似,随机生成的浮点数的取值满足均值为0,方差为1的正态分布。

import torch
a = torch.randn(2,3)
a 

得到:

tensor([[-0.0067, -0.0707, -0.6682],
        [ 0.8141,  1.1436,  0.5963]])

1.5 torch.range

torch.range用于生成数据类型为浮点型且起始范围和结束范围的Tensor,所以传递给torch.range的参数有三个,分别为起始值,结束值,步长,其中步长用于指定从起始值到结束值得每步的数据间隔。

import torch
a = torch.range(1,20,2)
a

得到:

tensor([ 1.,  3.,  5.,  7.,  9., 11., 13., 15., 17., 19.])

1.6 torch.zeros/ones/empty

torch.zeros用于生成数据类型为浮点型且维度指定的Tensor,不过这个浮点型的Tensor中的元素值全部为0。

torch.ones生成全1的数组。

torch.empty创建一个未被初始化数值的tensor,tensor的大小是由size确定,size: 定义tensor的shape ,这里可以是一个list 也可以是一个tuple

import torch
a = torch.zeros(2,3)
a

得到:

tensor([[0., 0., 0.],
        [0., 0., 0.]])

二、Tensor的运算

2.1 torch.abs

将参数传递到torch.abs后返回输入参数的绝对值作为输出,输入参数必须是一个Tensor数据类型的变量,如:

import torch
a = torch.randn(2,3)
a

得到的a是:

tensor([[ 0.0948,  0.0530, -0.0986],
        [ 1.8926, -2.0569,  1.6617]])

对a进行abs处理:

b = torch.abs(a)
b

得到:

tensor([[0.0948, 0.0530, 0.0986],
        [1.8926, 2.0569, 1.6617]])

2.2 torch.add

将参数传递到torch.add后返回输入参数的求和结果作为输出,输入参数既可以全部是Tensor数据类型的变量,也可以一个是Tensor数据类型的变量,另一个是标量。

import torch
a = torch.randn(2,3)
a
#tensor([[-0.1146, -0.3282, -0.2517],
#        [-0.2474,  0.8323, -0.9292]])
b = torch.randn(2,3)
b
#tensor([[ 0.9526,  1.5841, -3.2665],
#        [-0.4831,  0.9259, -0.5054]])
c = torch.add(a,b)
c

输出的c:

tensor([[ 0.8379,  1.2559, -3.5182],
        [-0.7305,  1.7582, -1.4346]])

再看一个:

d = torch.randn(2,3)
d
#这里我们得到的d:
#tensor([[ 0.1473,  0.7631, -0.1953],
#        [-0.2796, -0.7265,  0.7142]])

我们对d与一个标量10相加:

e = torch.add(d,10)
e

得到:

tensor([[10.1473, 10.7631,  9.8047],
        [ 9.7204,  9.2735, 10.7142]])

2.3 torch.clamp

torch.clamp是对输入参数按照自定义的范围进行裁剪,最后将参数裁剪的结果作为输出,所以输入参数一共有三个,分别是需要进行裁剪的Tensor数据类型的变量、裁剪的上上边界和裁剪的下边界,具体的裁剪过程是:使用变量中的每个元素分别和裁剪的上边界及裁剪的下边界的值进行比较,如果元素的值小于裁剪的下边界的值,该元素被重写成裁剪的下边界的值;同理,如果元素的值大于裁剪的上边界的值,该元素就被重写成裁剪的上边界的值。我们直接看例子:

a = torch.randn(2,3)
a
#我们得到a为:
#tensor([[-1.4049,  1.0336,  1.2820],
#        [ 0.7610, -1.7475,  0.2414]])

我们对b进行clamp操作:


b = torch.clamp(a,-0.1,0.1)
b
#我们得到b为:
#tensor([[-0.1000,  0.1000,  0.1000],
#        [ 0.1000, -0.1000,  0.1000]])

2.4 torch.div

torch.div是将参数传递到torch.div后返回输入参数的求商结果作为输出,同样,参与运算的参数可以全部是Tensor数据类型的变量,也可以是Tensor数据类型的变量和标量的组合。具体我们看例子

a = torch.randn(2,3)
a
#我们得到a为:
#tensor([[ 0.6276,  0.6397, -0.0762],
#        [-0.4193, -0.5528,  1.5192]])
b = torch.randn(2,3)
b
#我们得到b为:
#tensor([[ 0.9219,  0.2120,  0.1155],
#        [ 1.1086, -1.1442,  0.2999]])

对a,b进行div操作


c = torch.div(a,b)
c
#得到c:
#tensor([[ 0.6808,  3.0173, -0.6602],
#        [-0.3782,  0.4831,  5.0657]])

2.5 torch.pow

torch.pow:将参数传递到torch.pow后返回输入参数的求幂结果作为输出,参与运算的参数可以全部是Tensor数据类型的变量,也可以是Tensor数据类型的变量和标量的组合。

a = torch.randn(2,3)
a
#我们得到a为:
#tensor([[ 0.3896, -0.1475,  0.1104],
#        [-0.6908, -0.0472, -1.5310]])

对a进行平方操作

b = torch.pow(a,2)
b
#我们得到b为:
#tensor([[1.5181e-01, 2.1767e-02, 1.2196e-02],
#        [4.7722e-01, 2.2276e-03, 2.3441e+00]])

2.6 torch.mm

torch.mm:将参数传递到torch.mm后返回输入参数的求积结果作为输出,不过这个求积的方式和之前的torch.mul运算方式不太一样,torch.mm运用矩阵之间的乘法规则进行计算,所以被传入的参数会被当作矩阵进行处理,参数的维度自然也要满足矩阵乘法的前提条件,即前一个矩阵的行数必须和后一个矩阵列数相等
下面我们看实例:

a = torch.randn(2,3)
a
#我们得到a为:
#tensor([[ 0.1057,  0.0104, -0.1547],
#        [ 0.5010, -0.0735,  0.4067]])
b = torch.randn(2,3)
b
#我们得到b为:
#tensor([[ 1.1971, -1.4010,  1.1277],
#        [-0.3076,  0.9171,  1.9135]])

然后我们用产生的a,b进行矩阵乘法操作:

c = torch.mm(a,b.T)
c
#tensor([[-0.0625, -0.3190],
#        [ 1.1613,  0.5567]])

2.7 torch.mv

将参数传递到torch.mv后返回输入参数的求积结果作为输出,torch.mv运用矩阵与向量之间的乘法规则进行计算,被传入的第1个参数代表矩阵,第2个参数代表向量,循序不能颠倒。
下面我们看实例:

a = torch.randn(2,3)
a
#我们得到a为:
#tensor([[ 1.0909, -1.1679,  0.3161],
#        [-0.8952, -2.1351, -0.9667]])
b = torch.randn(3)
b
#我们得到b为:
#tensor([-1.4689,  1.6197,  0.7209])

然后我们用产生的a,b进行矩阵乘法操作:

c = torch.mv(a,b)
c
#tensor([-3.2663, -2.8402])

三、神经网络工具箱torch.nn

torch.autograd库虽然实现了自动求导与梯度反向传播,但如果我们要完成一个模型的训练,仍需要手写参数的自动更新、训练过程的控制等,还是不够便利。为此,PyTorch进一步提供了集成度更高的模块化接口torch.nn,该接口构建于Autograd之上,提供了网络模组、优化器和初始化策略等一系列功能。

3.1 nn.Module类

nn.Module是PyTorch提供的神经网络类,并在类中实现了网络各层的定义及前向计算与反向传播机制。在实际使用时,如果想要实现某个神经网络,只需继承nn.Module,在初始化中定义模型结构与参数,在函数forward()中编写网络前向过程即可。

1.nn.Parameter函数

2.forward()函数与反向传播

3.多个Module的嵌套

4.nn.Module与nn.functional库

5.nn.Sequential()模块

#这里用torch.nn实现一个MLP
from torch import nn

class MLP(nn.Module):
    def __init__(self, in_dim, hid_dim1, hid_dim2, out_dim):
        super(MLP, self).__init__()
        self.layer = nn.Sequential(
          nn.Linear(in_dim, hid_dim1),
          nn.ReLU(),
          nn.Linear(hid_dim1, hid_dim2),
          nn.ReLU(),
          nn.Linear(hid_dim2, out_dim),
          nn.ReLU()
       )
    def forward(self, x):
        x = self.layer(x)
        return x

3.2 搭建简易神经网络

下面我们用torch搭一个简易神经网络:
1、我们设置输入节点为1000,隐藏层的节点为100,输出层的节点为10
2、输入100个具有1000个特征的数据,经过隐藏层后变成100个具有10个分类结果的特征,然后将得到的结果后向传播

import torch
batch_n = 100#一个批次输入数据的数量
hidden_layer = 100
input_data = 1000#每个数据的特征为1000
output_data = 10

x = torch.randn(batch_n,input_data)
y = torch.randn(batch_n,output_data)

w1 = torch.randn(input_data,hidden_layer)
w2 = torch.randn(hidden_layer,output_data)

epoch_n = 20
lr = 1e-6

for epoch in range(epoch_n):
    h1=x.mm(w1)#(100,1000)*(1000,100)-->100*100
    print(h1.shape)
    h1=h1.clamp(min=0)
    y_pred = h1.mm(w2)
    
    loss = (y_pred-y).pow(2).sum()
    print("epoch:{},loss:{:.4f}".format(epoch,loss))
    
    grad_y_pred = 2*(y_pred-y)
    grad_w2 = h1.t().mm(grad_y_pred)
    
    grad_h = grad_y_pred.clone()
    grad_h = grad_h.mm(w2.t())
    grad_h.clamp_(min=0
评论 91
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写Bug那些事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值