随着LLM规模的不断扩大和训练数据的急剧增加,大型语言模型(LLMs)如GPT系列、LLaMA等已成为自然语言处理领域的佼佼者。然而,这些模型巨大的参数数量和计算需求使得它们在资源受限的环境(如移动设备、嵌入式系统等)中部署变得极具挑战性。为了克服这一难题,LLM量化技术应运而生。今天我们一起了解一下模型量化。
模型量化是指通过减少深度学习模型的参数大小和内存占用,使其在保持性能基本不变的前提下,更加适合在资源受限的环境中部署。量化技术通过将模型中的高精度参数(如32位浮点数)转换为低精度参数(如8位、4位甚至更低位数的整数),从而显著降低模型的存储和计算需求。这种转换不仅有助于减小模型体积,还能加快推理速度,降低能耗,是深度学习模型优化的重要手段之一。
二、模型量化的技术类型
模型量化技术种类繁多,每种技术都有其独特的优势和适用场景。以下是几种常见的量化技术:
1. QLoRA
QLoRA是一种基于低秩适应(LoRA)的量化微调技术,用于高效地适应预训练的大型语言模型。LoRA是一种参数高效的微调(PEFT)技术,它通过冻结预训练模型的权重,仅对一小部分额外的权重(称为适配器)进行微调,从而显著降低了内存需求。QLoRA通过两种机制实现量化:4位NormalFloat(NF4)数据类型和双重量化(DQ)。NF4是一种专为存储神经网络权重优化的4位数值格式,它将每个权重归一化到-1和1之间的值,以更准确地表示低精度权重值。双重量化则是在已经量化的模型上应用第二层量化,以实现极端的压缩效率。
2. GPTQ
GPTQ是指针对生成式预训练Transformer模型的后训练量化技术。该技术旨在减小模型大小,使其能够在单个GPU上运行。GPTQ通过逐层量化(layer-wise quantization)实现,即逐层量化模型权重,以最小化输出误差(均方误差MSE)。在量化过程中,模型权重首先被转换为矩阵形式,然后以128列为一批进行处理,采用惰性批量更新技术。该过程涉及量化每批权重、计算MSE并调整权重以最小化误差。一旦校准批次处理完毕,矩阵中剩余的权重将基于初始批次的MSE进行更新。最后,将各个层重新组合以生成量化模型。
3. GGML/GGUF
GGML是Georgi Gerganov开发的C语言机器学习库,专门用于支持Llama模型的权重量化。GGML通过k-quant系统实现量化,该系统根据所选量化方法使用不同位宽的数值表示。在k-quant系统中,最重要的权重被量化为更高精度的数据类型,而其余权重则被分配为更低精度的类型。例如,q2_k量化方法将最大的权重转换为4位整数,其余权重转换为2位。GGUF是GGML的继任者,旨在解决GGML仅支持Llama模型的限制。GGUF能够量化非Llama模型,通过将模型中的相似权重分组为更小、更易管理的簇,并对每个权重组进行统一量化。
4. AWQ
AWQ(激活感知权重量化)是一种先进的量化技术,它在量化权重时考虑了模型激活的分布。与传统仅关注权重的量化方法不同,AWQ旨在优化权重及其与激活的相互作用。在AWQ中,权重的量化根据模型中的激活分布进行调整。与较高方差激活相互作用的权重被量化为更高精度,而与较低方差激活相关联的权重则被量化为较低精度。此外,AWQ还最小化了原始模型和量化模型之间激活的均方误差(MSE),以确保量化不会降低模型性能。
三、模型量化的常用工具
为了实现模型量化,开发者需要借助各种量化工具。以下是一些常用的量化工具及其特点:
1. llama.cpp
llama.cpp是一款既支持量化又支持推理的大型语言模型工具。它允许将模型量化为GGML/GGUF格式,特别是进行权重量化。llama.cpp能够在本地和云端以最小的设置和先进的性能运行LLM推理。
2. GPTQ-for-Llama
GPTQ-for-Llama是一个专门用于LLaMA模型的4位量化库,仅支持Linux系统。它采用权重量化方法,有效减小了模型大小。
3. Auto-GPTQ
Auto-GPTQ基于GPTQ(仅权重量化)算法,支持多种开源LLM架构,如falcon、llama、bloom等。它提供了自动化的量化流程,简化了量化过程。
4. bitandbytes
bitandbytes是一个轻量级的Python包装器,围绕CUDA自定义函数构建,支持8位和4位量化。它提供了高效的量化操作,适用于需要快速量化的场景。
5. Optimum-Quantao
Optimum-Quantao是PyTorch量化工具包,支持Optimum后端。它采用线性量化方法,支持将权重量化为8位浮点数、8位整数、4位整数和2位整数。此外,它还支持量化感知训练(QAT),以提高量化模型的性能。
6. llm-awq
llm-awq支持激活感知的LLM量化。它在低位权重量化(INT3/4)方面表现出色,适用于LLMs的指令调优模型和多模型LLMs。llm-awq提供了快速且准确的量化过程。
7. AutoAWQ
AutoAWQ是一个易于使用的4位量化模型包。与FP16相比,AutoAWQ可将模型速度和内存需求降低3倍。它实现了AWQ算法,用于量化LLMs。AutoAWQ提供了自动化的量化流程,简化了量化过程,并提高了量化模型的性能。
四、模型量化过程中的注意事项
在进行模型量化时,开发者需要注意以下几点:
-
选择合适的量化技术和工具:不同的量化技术和工具具有不同的特点和适用场景。开发者需要根据自己的具体需求(如模型类型、部署环境、性能要求等)选择合适的量化技术和工具。
-
评估量化对性能的影响:量化虽然能够减小模型大小和计算需求,但也可能对模型性能产生一定影响。因此,在进行量化之前,开发者需要评估量化对模型性能的影响,并根据评估结果进行必要的调整和优化。
-
保持量化过程中的一致性:在量化过程中,开发者需要确保量化参数、量化方法和量化工具的一致性,以避免因不一致性导致的量化错误或性能下降。
-
关注量化后的模型评估:量化后的模型需要进行充分的评估,以确保其在实际应用中的性能和稳定性。评估内容包括但不限于准确率、召回率、F1分数等指标,以及模型的推理速度和内存占用等性能指标。
-
持续优化量化模型:量化是一个持续优化的过程。开发者需要不断尝试不同的量化技术和工具,以及调整量化参数和方法,以进一步提高量化模型的性能和稳定性。
模型量化作为深度学习模型优化的重要手段之一,在提升LLM部署效率方面发挥着重要作用。通过选择合适的量化技术和工具,评估量化对性能的影响,保持量化过程中的一致性,关注量化后的模型评估以及持续优化量化模型,开发者可以成功地将大型语言模型部署到资源受限的环境中,并实现高效的推理和计算。
五、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】