大模型部署的主流技术:Ollama、LM Studio、vLLM

一、Ollama

Ollama 是一个可在用户本地LLM部署的开源平台,支持Linux、Windows等多平台部署,如果基于 Docker 安装 Ollama 可以简化后续的配置步骤。Ollama支持 GPU加速,可显著提升性能。例如,在华为云的ECS上部署时,可以使用带有N卡的GPU加速型实例来运行Ollama容器。

Ollama提供了一个直观且易于使用的命令行界面(CLI),使得即使是非技术人员也能轻松安装和使用。此外,它还支持通过HTTP接口和Web UI进行访问,进一步增强了用户体验。

为了降低模型的存储需求和计算资源消耗,Ollama 还支持多种 量化技术,如:4-bit和8-bit量化。这些技术可以显著减少模型的体积和内存占用,从而使得在普通硬件上运行大型模型成为可能。

二、LM Studio

LM Studio 是一款专为本地运行和管理大型语言模型(LLM)设计的桌面应用程序。它支持在 Windows、Mac 和 Linux 系统上运行,允许用户无需联网即可下载、安装和实验开源的大型语言模型,如 Llama、Mistral 和 Phi 等。

LM Studio 的主要特性包括:本地运行和管理模型多平台支持内置聊天界面和本地服务器等。适合希望在本地环境中探索和应用大型语言模型的用户,无论你是技术专家还是普通用户,都可以通过 LM Studio 轻松实现 AI 模型的本地化部署和实验。

三、vLLM

vLLM(Very Large Language Models)也是一种高效的大型语言模型推理和部署框架,由加州大学伯克利分校开发。vLLM通过优化内存管理和计算资源的使用,从而实现对大型语言模型的高效推理和部署。vLLM可以支持安装在本地或者云环境中运行,并且同样支持GPU和CPU等多种硬件平台加速。

vLLM 采用 PagedAttention 算法,有效管理键值缓存(KV Cache),显著减少了内存浪费,并提高了模型的运行效率。vLLM支持异步处理和连续批处理请求,使得模型推理的吞吐量大幅提升,适用于高并发场景。vLLM能够无缝支持多种主流语言模型架构,包括 GPT、BERT、T5 等,并且与 OpenAI 的API兼容,方便开发者快速集成。


四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值