SPSS 中介效应检验编程

424 篇文章 ¥29.90 ¥99.00
本文介绍了如何使用SPSS进行中介效应检验,详细阐述了如何通过线性回归模型建立自变量X、中介变量M和因变量Y的关系,并提供了相关SPSS编程代码。通过分析中介效应的间接效应、直接效应和总效应,帮助读者理解和应用中介效应检验来理解变量间的影响过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在统计学中,中介效应检验是一种用于探究一个变量对两个其他变量之间关系的影响程度的方法。中介效应检验可以帮助我们理解一个变量通过作用于另一个中介变量来影响最终结果变量的过程。在本文中,我们将使用SPSS软件来进行中介效应检验,并提供相应的源代码。

首先,我们需要准备一份数据集,其中包含我们感兴趣的自变量、中介变量和因变量。假设我们的数据集名为"dataset.sav",其中包含自变量X、中介变量M和因变量Y。我们将使用线性回归模型来进行中介效应检验。

以下是进行中介效应检验的SPSS代码:

* 导入数据集.
GET FILE='dataset.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.

* 运行线性回归模型.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT Y
  /METHOD=ENTER X
  /SAVE PRED(Mediators).

* 提取中介变量的预测值.
DATASET ACTIVATE DataSet1.
COMPUTE M_hat = $PRED1.

* 运行中介效应模型.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=
### 使用SPSS进行Bootstrap中介效应检验 #### 准备工作 为了在SPSS中执行Bootstrap中介效应检验,需先安装并加载Process插件。该插件专为简化复杂统计操作设计,特别适合用于中介效应分析[^1]。 #### 执行Bootstrap中介效应检验的具体方法 ##### 加载数据集 确保已准备好的数据集中含有自变量(X),因变量(Y)和中介变量(M)。这些变量应基于具体的研究背景选取适当的数据字段。例如,在研究压力对健康影响的过程中,可将“压力水平”设为X,“身体健康状况”作为Y,而“心理状态”则充当M的角色。 ##### 启动Process宏命令 进入`Analyze -> Regression -> PROCESS by Andrew F. Hayes (v3)`菜单选项启动Process对话框。在此界面内指定模型类型(Model Number),对于简单的单中介模型通常选用Model 4;多中介情况可根据实际需求调整至其他编号如6或7等。 ##### 设置输入变量 - **Outcome Variable**: 将目标变量即最终想要解释的现象设定为此处——本例中的“身体健康状况”(Y)。 - **Independent Variable**: 输入初始原因因素——这里指代的是“压力水平”(X)。 - **Mediator(s)**: 添加中间过程涉及的因素——此处对应于“心理状态”(M)。 ##### 配置Bootstrap参数 勾选`Show the advanced options`以展开更多设置项。随后找到并激活`Bootstrapping`复选框来启用此功能。推荐至少抽取5000次样本重采样次数(`Number of bootstrap samples`)以获得稳定可靠的估计结果[^2]。 ##### 输出解读 运行上述配置后,SPSS会生成一系列表格与图表辅助解析中介效果的存在与否及其强度大小。重点关注Indirect Effect部分下的Confidence Interval(CI),如果CI不包含零,则表明存在显著的间接路径作用。 ```spss * Example SPSS Syntax for Running a Simple Mediation Analysis with Bootstrapping. PROCESS Y=health X=stress M=mood /model=4 /boot=5000; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值