干货 | 利用SPSS进行高级统计分析第二期

在这里插入图片描述
在这里插入图片描述
Hello,
这里是行上行下,我是喵君姐姐~

在本期中,我们继续为大家介绍如何利用SPSS进行:中介、多重中介、链式中介、调节分析、有中介的调节分析等。

原文链接:
https://mp.weixin.qq.com/s?__biz=MzI0MTQxNDE5NA==&mid=2247506738&idx=1&sn=d42066a3790dfdf3bcaed1fc3369cf7f&chksm=e909626fde7eeb79e5c16c68db88ce2362b74664867cd64ba25d01592c0f4d8089f5ddff8981&scene=21#wechat_redirect

在这里插入图片描述

1 中介【报告B,SE,t(df),p),置信区间,画中介效应图】

1.回归方程法

1.1 算三个回归方程

  1. 自—因
  2. 自—中
  3. 自、中—因

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
1.2 数据分析
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2. Process插件法:Model4

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
部分标准化
效应量/Y的标准差
完全标准化
所有变量的标准化

3. 报告【B、SE、t(df)、P、置信区间+图(标准化系数)】
本研究采用软件SPSS 24.0 中文版进行采集录入和统计分析实验数据。中介效应检验:参照Preacher 和Hayes (2004)提出的Bootstrap 方法进行中介效应检验(模型4),样本量选择5000,在95%置信区间下。

为了探讨MIL和FCI的关系中是否存在PA的中介作用,本研究以MIL得分为自变量,FCI得分为因变量,PA得分为中介变量进行中介效应检验。结果表明,PA在MIL和FCI之间起着中介作用。

MIL对PA有显著的预测作用(B=0.24,SE=0.07,t(98)=3.55,p < 0.001),置信区间(LLCT = 0.10,ULCT =0.37)不包含0;中介检验的结果不包含0(LLCT =0.07, ULCT =0.37),表明PA的中介效应显著(中介效应大小为0.22,SE=0.08),中介效应如图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

壹脑云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值