向量加权平均算法附代码

向量加权平均算法(Vector Infomax)是一种基于信息熵的特征提取方法,常与神经网络结合提升模型性能。本文提供了一段Matlab实现的代码示例,包括初始化权重矩阵、计算信息熵、更新权重等步骤,并指出由于迭代次数较多,可能影响算法效率,可通过调整超参数优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量加权平均算法附代码

向量加权平均算法(Vector Infomax)是一种常用的特征提取算法,其核心思想是使用信息熵来评估特征提取的效果。在实践中,向量加权平均算法通常与神经网络结合使用,以提高模型的性能。

以下是基于Matlab的实现代码:

function [W, V] = vector_infomax(X, maxIter, learningRate)
% X: 样本数据矩阵,每一列代表一个特征
% maxIter: 最大迭代次数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值