向量加权平均算法附代码
向量加权平均算法(Vector Infomax)是一种常用的特征提取算法,其核心思想是使用信息熵来评估特征提取的效果。在实践中,向量加权平均算法通常与神经网络结合使用,以提高模型的性能。
以下是基于Matlab的实现代码:
function [W, V] = vector_infomax(X, maxIter, learningRate)
% X: 样本数据矩阵,每一列代表一个特征
% maxIter: 最大迭代次数
向量加权平均算法附代码
向量加权平均算法(Vector Infomax)是一种常用的特征提取算法,其核心思想是使用信息熵来评估特征提取的效果。在实践中,向量加权平均算法通常与神经网络结合使用,以提高模型的性能。
以下是基于Matlab的实现代码:
function [W, V] = vector_infomax(X, maxIter, learningRate)
% X: 样本数据矩阵,每一列代表一个特征
% maxIter: 最大迭代次数