[原创]历时10年, 我是如何进行股票量化交易开发的? 目前版本: “妖股大师 V5.5.5.59 beta“

常用网名: 猪头三 (643439947)
出生日期: 1981.XX.XX
编程生涯: 2001年~至今[共23年]
职业生涯: 21年
开发语言: C/C++、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python
开发工具: Visual Studio、Delphi、XCode、Eclipse、C++ Builder
技能种类: 逆向 驱动 磁盘 文件
研发领域: Windows应用软件安全/Windows系统内核安全/Windows系统磁盘数据安全/macOS应用软件安全
项目经历: 磁盘性能优化/文件系统数据恢复/文件信息采集/敏感文件监测跟踪/网络安全检测

[序言]
为什么会突然写这篇文章? 因为时机已经成熟了, 为什么会成熟?下面我会详细分享.

["妖股大师"的背景]
"妖股大师"的量化交易模型, 是基于我表哥模型建立起来的. 我表哥是一名高中数学老师, 是2004年开始以散户的身份入市, 经历了20年的洗礼(2006年大牛市, 2016年熔断, 以及各种阶段的小暴涨(比如目前最典型的2024年9月中旬至10月初), 以及各种阶段的大小暴跌, 阴跌...), 启动资金不详, 反正通过A股赚取了2套100~120平米的商品房和1辆奔驰, 并且持续到现在2024年11月17日保持稳定的获利, 目前小孩也上了大学, 也有足够的资金来为儿子购买未来的婚房. 我认为表哥这样的成绩才是最符合普通老百姓的标准, 因为普通人起步资金少, 你不可能一下暴富, 财富积累是需要时间, 是细水长流的过程, 所以我对大A股市的投资态度是: 在恶略的环境下, 通过投资周期不超过5天的反复操作, 获得稳定的小收益, 极少成多, 以实现可以改善生活的最大化收益. 就比如我表哥, 房子, 车子, 老婆, 小孩, 都有了, 那么股票还持续性的获得收益, 剩下的只不过是享受人生的乐趣, 到处去旅游, 提前养老.

[我的背景]
我是1997年接触A股, 因为当时父母已经在炒股了. 于2006年大牛市以散户身份入市. 但由于我对炒股没有天赋, 因此主要领域是编程, 不过A股兴趣没有磨灭, 有时间就会看看. 我拥有20多年的职业化编程经验, 并拥有15年以上的股票研究经验, 其中也积累了不少数据模型分析的经验.

[合作]
当我知道表哥通过A股赚钱了第2套房的时候, 我就深知表哥肯定有自己熟悉的固定股票交易套路. 于是在2015年第一次跟表哥进行合作进行数据分析和建模, 但由于2013年, 我已创业在先, 有自己的软件公司且比较忙, 而且数据分析和建模都需要大量的时间通过编程来验证, 手头还有2款软件要交付给欧美市场, 因此途中彻底中断研究, 直到2018年6月, 我再一次联系表哥, 想重启他的股票模型数据分析和建模, 表哥再次爽快答应. 然后并与2018年8月又开始进行大规模编程和建模, 直到2024年11月, 股票软件分析器 才稳定在v5.5.5.59 beta版本.

["妖股大师"的开发路程非常艰辛]
2015年开始筹备规划, 直到2024年11月, 把一个从纯粹手工分析股票的模型转变为程序化自动分析的模型, 整整历时了10年时间. 但是大家要注意一个细节, 量化一个模型最好是基于已发现且经过时间考验的手工模型. 比如我表哥通过大量实盘交易, 大量的总结, 大量的心得, 才获取得到一个手工模型, 并且盈利, 这期间也用了10年以上, 所以一个成熟的模型, 从手工发现->量化精确->程序化自动分析, 这个周期一共耗时了20年.

[为什么会突然写这篇文章? 因为时机已经成熟了, 为什么会成熟?]
原因很简单: 因为"妖股大师"在量化并程序化完成之后, 于2020年开始进行实测, 实测的目的就是看量化之后的模型, 能否兼容股市的数据变化, 如果不兼容, 那么就导致模型选出来股票会因为A股数据的波动而失真. 因此"妖股大师", 需要经过股市的6个阶市场波动的洗礼: 大跌, 阴跌, 大涨, 慢涨, 快速暴跌, 快熟暴涨. 那么2020年直到2024年, 这4年时间, "妖股大师"的股票量化模型完整的经历了这6个阶段的波动, 针对每个阶段, 都对模型进行了数据微调, 目前彻底地保证了模型分析出来的股票形态在股市6个阶段的市场波动都是前后保持一致, 股票形态都是唯一的. 因此我很骄傲很自豪地说: "妖股大师"是我人生的另一个杰出的作品, 是我编程人生的一个高光时刻, 因此今日2024年11月17日我很自豪的分享出来.

["妖股大师"的详细介绍]
1> 开发语言: C/C++, Delphi
2> 界面库: MFC, VCL
3> 功能: 盘后自动选股, 盘中自动盯盘, 盘中出股票买卖信号
4> 优势1: 盘后选股, 5000多只股票的情况下, 5分钟内选出强势股票.
5> 优势2: 盘中盯盘, 无需全面监控所有5000多股票, 而是通过模型自动挑选强势股票进行盘中监控, 支持多线程, 并发实时数据显示, 分析, 以及信号发出
6> 优势3: 模型强大, 支持30多个参数, 全自动化. (备注: 大模型参数越多, 表示精度越高, 因此我们的模型支持30多种参数限定选股, 股票形态精度高)
7> 状态: 目前处于自用状态且盈利. 不公开使用.

{ 更新日志 2010.10.27 增加采用注册回调函数方式获取数据,详细函数声明请参考 uFunction.pas 相关数据结构声明请参考 TDXGrobal.pas 以S_打头的均为注册回调函数的函数 procedure S_InitMarketData (TDXManager: longword; CallBack :TOnDecodePacket_INITMARKET); stdcall; procedure S_GetPK (TDXManager: longword; CallBack :TOnDecodePacket_PKDAT); stdcall; procedure S_GetTestRealPK (TDXManager: longword; CallBack :TOnDecodePacket_REALPK); stdcall; procedure S_GetKDays (TDXManager: longword; CallBack :TOnDecodePacket_DAYS); stdcall; procedure S_GetDeals (TDXManager: longword; CallBack :TOnDecodePacket_DEALS); stdcall; procedure S_GetMins (TDXManager: longword; CallBack :TOnDecodePacket_MINS); stdcall; procedure S_Get_QH_KDays (TDXManager: longword; CallBack :TOnDecodePacket_FUTURES_DAYS); stdcall; procedure S_Get_QH_TestRealPK (TDXManager: longword; CallBack :TOnDecodePacket_FUTURES_PKDAT); stdcall; procedure S_Get_QH_Mins (TDXManager: longword; CallBack :TOnDecodePacket_FUTURES_MINS); stdcall; procedure S_Connected (TDXManager: longword; CallBack :TRNotifyEvent); stdcall; procedure S_DisConnected (TDXManager: longword; CallBack :TRNotifyEvent); stdcall; 2010.10.26 //期货,函数用法基本同普通股票函数,在使用 R_Connect 时,请指定期货服务器地址及端口(7721) procedure R_Get_QH_KDays (TDXManager: longword; StkCode :PChar; startcount, count: integer); stdcall; procedure R_Get_QH_TestRealPK (TDXManager: longword; StkCode :PChar); stdcall; } { ****************************************** 以下为Delphi版的数据结构和相关调用函数声明 使用其他开发语言的,只要转换成自己语言的相应格式就可以了 目前在 RSRStock.dll 中,提供了如下几个导出函数: DLLVER, R_Open, R_Close, R_Connect, R_DisConnect, R_InitMarketData, R_GetPK, R_GetTestRealPK, R_GetKDays, R_GetDeals, R_GetMins, R_GetMarket, R_GetMarketByStockCode, R_GetMarketByStockName,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不是代码教父

我的创作动力离不开你的真诚激励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值