走迷宫
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描述
一个由n * m 个格子组成的迷宫,起点是(1, 1), 终点是(n, m),每次可以向上下左右四个方向任意走一步,并且有些格子是不能走动,求从起点到终点经过每个格子至多一次的走法数。
输入
第一行一个整数T 表示有T 组测试数据。(T <= 110)
对于每组测试数据:
第一行两个整数n, m,表示迷宫有n * m 个格子。(1 <= n, m <= 6, (n, m) !=(1, 1) ) 接下来n 行,每行m 个数。其中第i 行第j 个数是0 表示第i 行第j 个格子可以走,否则是1 表示这个格子不能走,输入保证起点和终点都是都是可以走的。
任意两组测试数据间用一个空行分开。
输出
对于每组测试数据,输出一个整数R,表示有R 种走法。
示例输入
3
2 2
0 1
0 0
2 2
0 1
1 0
2 3
0 0 0
0 0 0
示例输出
1
0
4
#include <bits/stdc++.h>
using namespace std;
int map_[110][110];
bool vis[110][110];
int n,m;
int step;
void DFS(int row,int col)
{
if(row < 0 || row >=n || col < 0 || col >= m)
return ;
if(row == n-1 && col == m-1)
{
step++;
return ;
}
if(!vis[row][col] && !map_[row][col])
{
vis[row][col] = true;
DFS(row+1,col);
DFS(row-1,col);
DFS(row,col+1);
DFS(row,col-1);
vis[row][col] = false;
}
}
int main()
{
std::ios::sync_with_stdio(false);
int T;
cin>>T;
while(T--)
{
memset(vis,false,sizeof(vis));
cin>>n>>m;
for(int i=0; i<n; i++)
{
for(int j=0; j<m; j++)
{
cin>>map_[i][j];
}
}
step = 0;
DFS(0,0);
cout<<step<<endl;
}
return 0;
}