CV/DL基本概念 之 precision/recall
precision
准确率,TP/(TP+FP),表征目标识别的准确性,即模型对捕捉某一类别与其他类别的差异的能力。一般来说,如果如果将判定阈值提高,或者模型倾向于很少将样本预测为本类别,则precision可以提高,因为FP减少,但这同时导致FN迅速提高,导致recall迅速下降。
recall
召回率,TP/(TP+FN),表征目标识别的覆盖性,即模型对捕捉某一类别不同个体间的共性的能力。同一个类别样本的外表相近而不完全相同,recall就是要求模型能够尽可能的覆盖同一类别样本的各种外表或者能够抽取同一类别样本的各种外表的共性。一般来说,如果将判定阈值降的很低,或者模型把所有样本都预测为该类别,recall就可以达到很高,因为这在提高了TP,降低了FN,但是这将同时导致FP迅速增加,从而准确率迅速降低。
precision和recall的联系
理想模型是precision和recall都接近1的模型,首先说这是完全可以的。尽管从上文来看precision和recall存在某种“矛盾”,因为如果我们能够牺牲一者,就能够迅速提高另一者,但是这种“矛盾”其实是不存在的,因为牺牲一者,提高另一者只是一个捷径,而不是必然,提高一者并不一定要牺牲另一者。一个模型同时高质量捕捉类间差异和类内共性是完全可以的,只是没有捷径那么方便易得。