大模型常见依赖库的安装问题汇总

大模型常见依赖库的安装问题汇总

安装前须知:

最好使用conda 创建虚拟环境,使用方法

conda create -n venv_name python=3.10
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

创建后,使用以下两条命令确保 当前使用的 pip是虚拟环境下的,不然有可能会造成冲突

which python
which pip 
python -m pip  #此命令是确保使用虚拟环境下的pip 

以下库在cuda-11.8 ToolKits 全部都能安装成功(尤其是flash-attention 避免了重新编译,节省大量时间)

transformers 安装

这个库比较好安装,它不依赖torch

accelerate 安装

一般在加载模型如果使用 device_map = “auto” 时会用到,这个库的作用是用来加速训练的,在安装它之前最好先安装torch,不然也会自动下载最新torch版本

torch 库安装

安装链接,从torch2.0后,在安装时会自动安装nvidia runtime,避免用户手动安装 CUDA ToolKits和配置环境变量

如果需要自定义CUDA开发、某些第三方库依赖CUDA编译等情况需要额外安装CUDA ToolKit

*Note:我自己测试中发现,我在已经安装完CUDA ToolKits=11.8的情况下,直接使用命令,会自动下载cuda12的运行库,如下图。这种情况下也能正常运行,原因见下图chatgpt的回答。

pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 

安装的cuda运行时库
此torch版本依赖的cuda版本

请添加图片描述

autoawq 安装

量化库一般依赖当前cuda、torch版本以及GPU型号、GPU计算能力,这里推荐两种安装方式

  1. 使用源码编译安装,在安装时需要修改setup.py 里依赖,不然有可能会自动下载最新的torch
  2. 第二种 下载whl文件这里,whl文件是根据特定版本编译好的,对应版本安装就行,如果whl依赖别的库,可以使用事先安装好,在使用命令
  3. 可以看到我这里是安装的autoawq是基于cuda11.8编译的,也能够正常运行,原因见下图
pip install --no-deps ./autoawq-0.2.5+cu118-cp310-cp310-linux_x86_64.whl  #安装时不下载依赖库

请添加图片描述

flash-atten2 安装

如果上下文(Token)很长的话,QK计算会呈平方式增长,计算快的主要原理是通过某种方式将本来在VRAM(显存)挪到更快SRAM中计算,安装时需要事先安装CUDA ToolKit,安装方式如下参看repo

pip install flash-attn --no-build-isolation --use-pep517  #需要很久
pip install whl文件  #这种方式很快,但是需要和torch、cuda、python都匹配

AutoGPTQ 安装

使用以下命令安装,此版本auto-gptq是基于cuda12.1(我的cuda toolkit=11.8)正常运行

pip install auto-gptq==0.6.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值