DL with python 书中基于torch的RNN简单实现代码

#用numpy来实现简单的RNN
import numpy
import numpy as np

timesteps=100
input_features=32
output_features=64

inputs=np.random.random((timesteps,input_features))

state_t=np.zeros((output_features,))#初始化t=0时刻的状态
#创建随机的权重矩阵
W=np.random.random((output_features,input_features))
U=np.random.random((output_features,output_features))
b=np.random.random((output_features,))

successive_outputs=[]
for input_t in inputs:
    #由输入和当前的状态决定输出
    output_t=np.tanh(np.dot(W,input_t)+np.dot(U,state_t)+b)
    #将输出保存到一个列表中
    successive_outputs.append(output_t)
    #把上一时刻的输出当作下一时刻的状态
    state_t=output_t

final_output_sequence=np.stack(successive_outputs,axis=0)

代码部分如上,主要基于numpy库。(代码源自DL with python一书(作者为弗朗西所·肖莱)

特别提醒:在python3 的IDEpycharm中调用imdb包需要用以下代

from  keras._tf_keras.keras.datasets import  imdb

码,直接使用以下代码可能导致报错:

from keras.datasets import imdb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值