数学术语之源——行列式(determinant)

1.  单词“determinant的词源

         作为形容词始于公元1600,词义为服务于决策(serving to determine);” 作为名词,始于1680年代,词义为“固定、定义或建立(某事物)(that which fixes, defines, or establishes (something));”来自拉丁语“determinantem(主格“determinans”) ,“determinare的现在分词,词义为“封闭、边界、设限于……(to enclose, bound, set limits to)。” de”(词义为“off,参见词缀“de-”)+“terminare”(词义为“设置末尾或边界(to mark the end or boundary)”)构成,这个词又来自“terminus ,词义为“末端,限定(endlimit)”

2.  单词“determinant在数学中的含义

    牛津英语词典(OED)解释为“The sum of the products of a square block or 'matrix' of quantities, each product containing one factor from each row and column, and having the plus or minus sign according to the arrangement of its factors in the block.” (量的方块或量的“矩阵”之积的和,每一个积包含一个来自每行和每列的因子,并且根据其因子在块中的排布而具有正号或负号。) (行列式的行数和列数必需相等。)

    通常写成在两侧带垂直竖线的矩阵形式,例如

\left |\begin{array}{rlc} a_{1} & a_{2} &a_{3} \\ b_{1} & b_{2} &b_{3} \\ c_{1} & c_{2} &c_{3} \\ \end{array} \right |  。

1801 Gauss最初将这个词应用于一类特殊的函数某些二次型的性质取决于这些函数的性质随后,Cauchy将其引入法语

    也就是说,“determinant这个词,作为形容词在拉丁语中的本义是“决定性的,限制性的”,而作为名词在拉丁语中的本义是“起决定作用或限定的东西的某种东西”。

Cauchy 将其引入数学中,其表示的数学意义就是“这种数学结构对求取另一种数学结构具有决定性或限制性的意义”。而这种数学结构按行和列书写,在中文中我们将其译为“行列式”。但我们应注意与矩阵的区别,因为矩阵也是按行和列排列,只不过根据规定和计算法则,矩阵的行数和列数必须相同,因此这个中文译名并不十分严谨。如果把“方阵”这个名称用于表示行列式,倒反而更为合适一些。

3.  矩阵和行列式的发展历史简述

   矩阵(matrices)行列式(determinant)的起源可以追溯到公元前二世纪,尽管其痕迹可以追溯到公元前四世纪。然而直到 17 世纪末,这些思想才重新出现,并真正开始发展

    行列式的概念最早可以追溯到17世纪的日本数学家关孝和(Seki Takakazu),他在研究多项式方程的根时首次提出了行列式的概念。后来,欧洲的数学家CramerLaplace对行列式进行了深入的研究和应用,使得行列式成为线性代数中不可或缺的工具。

    矩阵的发明则可以追溯到19世纪初叶。当时,数学家们开始意识到需要一种形式来简洁地表示一组线性方程,并且能够进行线性变换的运算。这就促成了矩阵的发明和发展。最早使用矩阵概念的数学家之一是英国数学家Arthur Cayley,他在1858年引入了矩阵的术语,并将其应用于线性代数和几何学中。

    Leibniz使用“结果(resultant)”一词来表示行列式的某些项的组合和。他证明了各种结果,包括本质上是Cramer法则的结果。他还知道行列式可以按任何列展开——现在称为Laplace展开式。除了研究方程的系数系统(这使他获得了行列式)之外,Leibniz还研究了二次形式(quadratic forms)的系数系统这自然而然地导致了矩阵理论的发展

    1764 年,Bezout给出了计算行列式的方法,Vandermonde在 1771 年也给出了计算行列式的方法。1772 年,Laplace声称CramerBezout引入的方法不切实际,在一篇研究内行星轨道的论文中,他讨论了使用行列式来求解线性方程组,而无需实际计算。令人惊讶的是,Laplace用“结果(resultant)”这个词来表示我们现今所说的行列式:令人惊讶的是,它与Leibniz使用的词相同,但Laplace一定不知道Leibniz的工作。Laplace给出了行列式的展开式,现在以他的名字命名

    1812 年,Cauchy首次以现代意义使用了“determinant”一词。Cauchy的著作是早期关于行列式的著作中最完整的。他重新证明了早期的结果,并给出了自己关于小式和(minors)伴随式(adjoints)的新结果。在1812年的论文中,行列式的乘法定理首次得到证明。

    Weierstrass在他的讲座中使用了行列式的公理定义,他死后,该定义于 1903 年在《行列式理论》一书中发表。同年,Kronecker关于行列式的讲座也出版了,也是在他死后。随着这两本书的出版,现代行列式理论已经确立,但矩阵理论则花了更长的时间才成为一个被完全接受的理论。1907 年 Bôcher 撰写的《高等代数导论》是一本重要的早期教材,它将矩阵引入数学的适当位置。Turnbull Aitken 在 1930 年代撰写了有影响力的教材,而 Mirsky 于 1955 年撰写的《线性代数导论》则使矩阵理论达到了目前作为最重要的本科数学主题之一的重要作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值