第 0 章 导读和解释
(Introductions and Explanations)
I.Grattan-Guinness
目录
0.1 数学史在数学教育中的可能用途(Possible uses of history in mathematical education)
0.3 关于本书内容及其读者群(The book and its readers)
0.4 参考文献(The References and bibliography)
0.5 本书采用的数学符号(Mathematical notations)
如今,数学哲学的考量往往与一致性、可预测性或构造性等更普遍的概念相联系。因此,在我们看来,微积分基础的演变仅仅等同于某些数学技术的发展,以及基于明显不一致而对这些技术的拒绝或修改。这种理解并不完整。它忽略了一个事实:从17世纪到19世纪,数学哲学的历史与微积分基础的历史大致相同。
-------------------------------------------Abraham Robinson (1966a, 280)(注:提供参考文献的方式在第 8 页的 0.4 节中描述。)
我(在剑桥大学读本科时)的大部分时间都花在了数学上,数学也在很大程度上主导了我进行哲学思考的尝试……那些教我微积分的人并不知道其基本定理的有效证明,并试图说服我接受官方的诡辩,将其视为一种信仰。
------------------------------------------- Bertrand Russell (1959a, 28, 35-36)
如果我将算术比作一棵树,它以众多的技巧和定理向上展开,而根部则深入深处……
-------------------------------------------Gottlob Frege(1893a, xiii)
凡是可证明的事物,在没有证据的情况下,都不应该被科学所相信。
-------------------------------------------Richard Dedekind (1888a, 前言)
0.1 数学史在数学教育中的可能用途(Possible uses of history in mathematical education)
本书叙述了微积分学从17世纪初到18世纪末的发展,以及它们在19世纪被纳入更广泛的数学分析学科的过程。本书描述了直到20世纪初的进展,并记录了自1870年左右开始的四十年间集合论和数理逻辑的引入和发展。本书特别关注了这些主题之间的密切联系及其相互交织的发展。
所有这些主题都曾被数学史学家探讨过,但本书的探讨方式却非同寻常;因为虽然我和我的合著者详细讨论了所涉及的数学,但我们也致力于向读者介绍其历史发展。我们希望本书能够对数学教育有所裨益,而这些益处我将在下文中探讨。
在本科课程中,学生们会详细学习大量的数学知识;但通常他们很少获得关于数学起源或创立动机的历史信息。这种教学传统有着其自身的历史。与许多科学一样,数学大约在两百年前开始进入现代专业化状态,而数学教育也相应地在稍后才制度化。1795年,巴黎综合理工学院(Ecole Polytechnique)的建立和巴黎师范学院(Ecole Norma)的重组,对于整个欧洲的科学教育实践而言,是尤为重要的“标杆(pace-setters)”,而基于这些院校课程编写教科书也成为了一种标准程序。事实上,一些数学分支的发展受到了教育需求的刺激;正如我们将看到的那样,数学分析就是其中之一。(注:我不知道现代学生对这些机构制定的教学计划作何反应。例如,1818年左右,巴黎综合理工学院的学生早上5:30起床祈祷,6:00至8:00学习,早餐后8:30至下午2:30学习,午餐和课后娱乐活动后4:30(周二6:30)至8:30学习。10:00是睡觉时间。周日是唯一不遵守这一惯例的日子,尽管仍然有各种各样的学习。(参见1819年巴黎综合理工学院,第55-63页。))
数学的专业化导致从事研究的数学家数量大幅增加,从而也增加了已发表著作的数量。为了以通俗易懂的形式向学生呈现这个不断扩展的世界的基本构成,教师和教科书作者(他们并非一直都以研究工作为重)试图尽可能精炼地呈现特定数学分支的精髓,使其简洁而严谨。这种呈现方式的优势在于,它能够在有限的篇幅内塞入尽可能多的可靠数学知识,并避免原本就厚重的书籍变得冗长难读。然而,这也意味着数学内容似乎完整而“完美地”印在了纸面上;虽然形式上可能清晰,但在很大程度上缺乏学习动机,因此学生很难从这个角度去理解。同样的教育方法在讲座课程中成为标准,其对学生的影响也同样存在优缺点。
换言之,在这种数学教育传统中,重点通常放在数学知识的累积(accumulation)上,放在构成数学理论的“事实”的积累(amassing)上;它很少考虑对数学的理解能力(understanding)的增长(growth)(译注:即强调记忆而忽略了理解力的增长),很少去理解数学理论发展及其形成的原因,而仅仅关注它的内容本身。现在,数学史可能对此有所帮助;毕竟,任何数学都是过去人类努力的成果,至少其最初动机的一些线索可能仍然具有现实意义或教育价值。历史因素在多大程度上可以得到利用,以及如何才能最有效地运用它们,这些都是难题,本文不作探讨。但需要强调的是,虽然学生应该对数学有更好的理解(就上述“理解(understanding)”而言),但他们不能指望数学会变得“更容易”学习。例如,如果仔细阅读这本书,那么它在某些地方会相当费力,需要用到纸笔。希望获得的理解力的回报能够形成足够的补偿。
0.2 本书的章节及其作者(The chapters and their authors)
本书之所以选择描述这些数学分支的发展历史,是因为它们非常重要,被广泛教授,提出了有趣的教育、历史和数学问题,并在某种程度上引导人们更广泛地理解数学。为了使本书篇幅适中,我决定集中讨论该学科的“纯粹”和基础方面。但其技术方面和应用方面也并未被忽略;或许有人会发现它们值得类似的探讨。特别是,牛顿力学的发展及其在19世纪扩展到数学物理学(包括电磁学和势论(potential theory)等主题)的历史,与微积分的发展及其扩展到数学分析的历史密切相关。
章节大致按照历史发展的时间顺序排列,随着故事的展开,数学通常会变得更加先进,而历史背景也越来越贴近现代情况。此外,历史记录与数学的形式呈现大致相反;它从微积分技术开始,以集合论结束,而分析的公理化处理则可以从集合论开始,以微积分结束。
现在让我来介绍一下作者和他们编写的章节。
第1章由丹麦奥胡斯大学(Aarhus)科学史系的Kirsti Møller Pedersen 撰写。她特别关注17世纪的无穷小微积分,并在本章中探讨了1630年至1660年间其技术的发展。由于当时微积分领域缺乏通用理论,因此必须重点关注技术。然而,16世纪代数符号系统的采用,使得代数方法和(传统)几何方法在诸如曲线的校正和求积、切线的构造以及最大值和最小值的确定等问题上逐渐融合。尽管代数技术本身的严谨程度较低,但它们的潜力开始显现。
第2章由荷兰乌得勒支大学(Utrecht)数学研究所的Henk Bos撰写。他研究了17和18世纪微积分的各个方面,并在本章中继续讲述了微积分直至1780年左右的发展历程。两位伟大的数学家有资格“发明”微积分:Newton和Leibniz。他们都创建了一套连贯的概念和方法体系,用于解决一般的曲线切线和求积问题。Leibniz的微积分和牛顿的流量微积分虽然在许多方面有所不同,但都清晰地认识到了我们如今所说的微分和积分之间的互逆关系。此外,两人都建立了一套符号、符号和规则体系,通过这些体系,他们的方法可以以基于公式的算法形式应用,而不是以参考图形的散文式几何论证形式呈现。在这两个体系中,Leibniz的体系影响更大;因此,Newton追随者所取得的进展并未被描述。Jakob Bernoulli和Johann Bernoulli,l'Hôpital以及许多其他数学家都创立了Leibniz微积分,并以精湛的技艺将其应用于实践。后来,Euler将解析式转化为一种形式,这种形式沿用了近一个世纪。与此同时,解析式的基础,尤其是无穷小量的运用,仍然不甚明晰。它们受到了哲学家George Berkeley的批评,也得到了数学家们以各种方式的辩护,但从逻辑的角度来看,没有一种方式令人满意。
第3章是我本人撰写的,创作时间是在我于英国米德尔塞克斯理工学院(Middlesex Polytechnic)工作期间,以及编辑科学史期刊《科学年鉴》(Annals of science)期间。本章描述了自Euler以来微积分的发展,以及19世纪20年代 Cauchy提出数学分析的兴起,以及数学分析的进一步发展,直至1880年左右。Lagrange提出了一个微积分基础,以取代Euler在用Taylor级数展开任何函数时使用无穷小量的做法;但Cauchy证明了其假设所有函数都可以如此展开的谬误。Cauchy的替代基础运用了极限理论,其应用范围远超以往,在很大程度上,通过在同一技术下结合级数的收敛性和函数的连续性,创建了我们如今所理解的数学分析。然而,他的体系并没有明确地包含多重极限理论及其相关区别,例如函数级数的一致收敛和非一致收敛的区别。此类级数的一个重要例子是Fourier级数,它由Fourier于1807年提出。Dirichlet于1829年成功地证明了此类级数的收敛性,这激发了后来对极限、收敛、函数和积分的诸多研究。多重极限分析的技术逐渐兴起,尤其是在19世纪最后三十年,Weierstrass及其追随者们对此进行了研究,并讨论了此类分析的主要特征。最后一节回顾了本书迄今为止的进展,并展望了后续章节。
第4章由美国马萨诸塞州(Massachusetts)波士顿大学(Boston)数学系的Tom Hawkins撰写。他最初对数学史的兴趣在于Lebesgue积分,并在此论述了19世纪和20世纪初积分的发展。在18世纪,积分通常被定义为微分的逆函数,但当时使用的函数种类不断增加,为这一定义提供了许多例外情况,因此,我们不可避免地要回归到(前)Leibniz对积分的解释,即积分主要被理解为面积或和。Cauchy在19世纪20年代发展了积分的基本理论,将其定义为一系列分割和的极限值。在接下来的40年里,他的成果被其他人(尤其是Riemann)发展,但当时使用的函数类型进一步扩展,需要使用集合论技术来定义集合函数(a set function)的积分,或“测度”。早期的定义被证明在范围上要么不一致,要么不充分,但在20世纪初,Lebesgue(和其他人)提出了一个定义,可以提供当时所需的普遍性定义。
第5章由美国纽约(New York)城市大学雷曼学院(Lehman College)历史系的Joe Dauben撰写。本章概括了他对数学史的特别兴趣:Georg Cantor的生平和著作。在上一章中,某些集合论技术在历史上被视为理所当然,但本书将详细描述它们的发展。Cantor并非唯一一位,甚至也不是第一位使用此类技术的数学家,但自19世纪70年代早期提出关于函数三角表示唯一性的定理之后,他创立了“Cantor集合”从而远远超越了所有竞争对手。该理论包含两个组成部分,它们在Cantor后期的概念中得到了激动人心的统一:一是以点集理论表达的线和平面的拓扑结构,二是无限大的基数和序数及其算术,它们与更普遍的集合概念相关。Cantor对实际无限性的肯定在他的同时代人中引起了强烈的反应,赞成和反对的都有。
第6章也是最后一章由Bob Bunn撰写,他曾就读于加拿大温哥华(Vancouver)不列颠哥伦比亚大学(British Columbia)哲学系,目前在该校担任Killam博士后研究员(Postdoctoral Fellowship)。他对自1880年以来半个世纪以来抽象集合论(以及数理逻辑等相关主题)的发展有着浓厚的兴趣,这一兴趣浓缩于本章之中,概述了19世纪70年代至1910年左右数学基础领域大部分领域的进展。本章汇集了前几章的内容,因为基础研究的动机包括Weierstrass时代数学分析的形成、Cantor集合论的悖论和其他特征、Frege和Russell为寻找新的算术基础所做的努力、Peano及其学派对数理逻辑的拥护以及Hilbert对逾数学(metamathematics)的引入。相互关系的复杂性和哲学问题的不可回避性,导致了关于数学证明的范围和界限以及数学与逻辑之间关系的各种不同观点。尽管在1870年之前,人们就已对数学基础和逻辑本质进行了研究,但与本文所述的发展相比,这些成就相对较小。唯一缺失的重要部分是布尔代数的引入,以及19世纪几何基础的发展。
0.3 关于本书内容及其读者群(The book and its readers)
至此,我将详细介绍本书,并指出其读者群。希望本科生能够使用它,尤其是在他们课程的后期;但本书并非学习数学的地方。这类训练必须通过微积分、数学分析、集合论或数理逻辑方面的书籍和课程获得,本书可作为这些课程的辅助读物。当然,学生可能不会选修所有这些科目的课程;他们会挑选与他们的学习最相关的章节,并可能出于一般兴趣阅读其他章节。本书对这些数学分支或其他相关学科的研究生、教师和研究数学家,以及所有熟悉这些领域并希望了解其历史发展的人,也应有所裨益。
读者可能想就我们讨论或提及的某个主题自己写点东西,而他之前没有做过任何历史研究。这个问题无法在此详细探讨,但在1973a 5的第3-34而中,对参考文献的收集和存储以及论文的规划进行了实际的讨论,这本书也包含许多数学史的参考书目。
现在,我要指出本书的一些局限性。首先,数学史专家会发现本书在历史阐释中存在一些细节上的遗漏和过于简化之处,他们必须承认,这是章节设计策略造成的。特别是,本书的讨论通常集中在主要数学家及其主要(通常已出版)著作上,而对其相关手稿以及一些不太知名的数学家的著作则只是一笔带过,甚至避而不谈,因为这些著作在当时显然被忽视了,尽管这并非理所当然。然而,当一些次要著作能够提供有趣的历史见解时,本书也会进行讨论。
语言方面也存在问题。我们已将所有必要的引文翻译成英文,但遗憾的是,许多原始资料没有译文(或只有不可靠的译文)。此外,我们引用了有价值的历史文献,作为关于特定主题的进一步信息的来源,无论其语言为何。事实上,对于本书所涉及的数学领域,许多原始资料和最优秀的历史文献过去和现在都是用拉丁语、俄语、法语和德语写成的。参考书目虽然内容丰富,但并非旨在详尽无遗地涵盖一手或二手文献;但它应该能够帮助读者从本书中延伸到相关主题。
我们没有详细描述这些历史人物的生平。更多传记信息可以在我们引用的一些二手资料、其他数学史著作以及百科全书和参考书中找到。对于后者,由 C. C. Gillispie 编辑、自 1970 年起由纽约斯克里布纳(Scribner)出版社出版的《科学传记词典》(Dictionary of scientific biography)尤其有用。
最后,我想说的是,虽然各章的设计尽可能地衔接,尽量减少重复或间断,但鉴于历史记录的复杂性以及多位作者的参与,每一章都不可避免地显得有些独立。为此,我恳请读者谅解——并附上书末的姓名和主题索引,其中列出了人物(以及已知姓名和日期)或主题的所有地点。
0.4 参考文献(The References and bibliography)
文献引用带来了诸多困难。本书引用了大量一手和二手文献,参考文献包括重印本和译本。为了避免冗长的脚注提供所有这些细节,导致文本混乱,文中引用作品时,都使用日期代码(dating code)或标语(catchwords),并在章节后提供完整的参考书目,详细说明出版时间。日期代码的形式为“1867a”。年份指的是作品首次出版(或手稿流传)的年份,尽管在一两个例子中,如果出版时间晚于该作者创作很久,则使用创作年份。即使只引用了该作者该年一部作品,也会添加后缀“a”,并将日期代码斜体化,以明确“1867a”引用的是出版物,而“1867”指的是年份。 (如果引用同一年份的多部作品,则使用后缀“ b”, “c”…。) 然而,作品的版本,通常在材料首次出版很久之后才出现,并且在几年内出版了多卷本,则使用标语“作品”、“著作”或“论文”来引用。此外,少数在不同时期出版过多个版本的书籍,以及创作日期不明的手稿,也会使用与其标题相符的标语。
简洁地引用作品中的特定段落也存在困难,例如,如果作品在作者生前出版过多次,之后又在其作品集或其他合集版本中重印,甚至可能被翻译成英文。在这种情况下,我们尽可能引用段落、章节甚至定理的编号,因为这些编号通常会在再版中保留,而页码通常每次都会更改。然而,有时页码无法避免,在这种情况下,我们会引用一个或最多两个相对方便的来源。
本书每章均按 2.4 这种风格(第 2 章第 4 节)编号,并附上“节(section)”字样。这些编号和“节”用于交叉引用。
0.5 本书采用的数学符号(Mathematical notations)
总体而言,本书所使用的符号是当今的标准符号;许多符号是作为我们所描述的数学发展的一部分而引入的。但在数理逻辑和集合论中使用了各种各样的符号,我在此指出了在第3-6章中采用了哪些符号(当然,除了原始资料的引用之外):
集合论:
∈——是……的一个成员(注:当应用于( ε , δ )风格的数学分析中时,应注意区分这个符号与ε(epsilon))
∉ ——不是……的一个成员
∩ 或 ⋂ ——交集
∪ 或 ⋃——并集
⊂——真包含于
⊆——包含于(非真包含于)
{a , b, …} ——对象 a , b, … 的无序集
𝜙 —— 空集
|——条件条(condition bar)
— —— 补集
~ —— 一对一的对应关系
数理逻辑(数学物理逻辑):
& —— 逻辑与
∨ —— 逻辑或
⟶ —— 若……测(if … then)
⟷ —— 当且仅当 (if and only if )
¬ —— 逻辑非
𝜙x —— 命题函数(propositional function)(注:微积分中的数学函数是通过(比如) f(x) 符号化的,其中括号括起自变量。)
(∀x)(…x…)——全称量词(universal quantifier)(“对于所有x…”)
(∃x)(…x…)——存在量词(existential quantifier)(“存在一个x…”)
----------------------------------------------------------------1976 年 11 月。
内容来源:
<<From the Calculus to Set Theory, 1630-1910>>(An Introductory History),I.Grattan-Guinness 等。