PyTorch生成式人工智能实战——分类任务详解:从原理到实战

目录

0. 前言:分类任务的本质

1. 端到端深度学习流程:像搭积木一样构建模型

1.1 核心步骤图解

1.2 数据预处理:让模型“吃”得更好

2. 二分类实战:T恤 vs 踝靴

2.1 数据准备:过滤与平衡

2.2 模型设计:从输入到概率

2.3 训练与测试:让模型“学会”分类

3. 多分类实战:10种服装识别

3.1 模型升级:输出10个类别

3.2 验证集与早停:防止“死记硬背”

3.3 训练结果与分析

4. 关键知识点总结

5. 思维导图:分类任务核心流程

6. 常见问题答疑


0. 前言:分类任务的本质

分类任务是深度学习的核心问题之一,目标是让模型学会将输入数据(如图像)划分到预定义的类别中。比如将服装图片分为“T恤”或“踝靴”(二分类),或细分为10种服装类型(多分类)。本节通过PyTorch实战,带你深入掌握分类任务的完整流程。


1. 端到端深度学习流程:像搭积木一样构建模型

1.1 核心步骤图解

  1. 数据获取与处理:原始数据→张量→归一化。

  2. 模型构建:堆叠神经网络层(如全连接层+激活函数)。

  3. 训练与验证:前向计算损失→反向传播优化→验证集监控。

  4. 测试与部署:最终性能评估与应用。

1.2 数据预处理:让模型“吃”得更好

  • 归一化的意义:将像素值从[0,255]压缩到[-1,1],加速训练收敛。

  • 代码示例

transform = T.Compose([
    T.ToTensor(),          # 转为PyTorch张量
    T.Normalize([0.5], [0.5])  # 归一化到[-1,1]
])

2. 二分类实战:T恤 vs 踝靴

2.1 数据准备:过滤与平衡

# 只保留标签0(T恤)和9(踝靴)
binary_train_set = [x for x in train_set if x[1] in [0,9]]
binary_test_set = [x for x in test_set if x[1] in [0,9]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值