目录
一、项目背景与核心价值
在2015年Andrej Karpathy的著名博客中,首次展示了字符级RNN在文本生成中的惊人能力。本文将带您深入实现这一经典模型,并重点剖析以下核心要点:
-
字符级建模的独特优势:相比词级模型,字符级模型无需预定义词表,可处理任意字符组合
-
时序数据建模原理:RNN如何通过循环机制捕捉文本序列的长期依赖
-
工业级实现技巧:从数据预处理到模型调优的完整Pipeline
-
生成文本的优化策略:温度参数对生成质量的影响机制
二、数据准备与特征工程
2.1 数据获取与清洗
import tensorflow as tf
import numpy as np
# 下载莎士比亚全集
shakespeare_url = "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
filepath = tf.keras.utils.get_file("shakespeare.txt", shakespeare_url)
# 文本预处理
with open(filepath, "r", encoding="utf-8") as f:
text = f.read().lower() # 统一小写
text = text.replace("\n", " ") # 替换换行符
print(f"Corpus length: {len(text)} characters")
2.2 字符编码与序列化
# 构建字符词典
chars = sorted(list(set(text)))
max_id = len(chars)
char2id = {char:i for i, char in enumerate(chars)}
id2char = {i:char for char, i in char2id.items()}
# 文本向量化
encoded = np.array([char2id[c] for c in text])
print(f"Unique characters: {max_id}")
2.3 数据集划分策略
# 时序数据划分方法
dataset_size = len(encoded)
train_size = dataset_size * 90 // 100
val_size = (dataset_size - train_size) // 2
train_text = encoded[:train_size]
val_text = encoded[train_size:train_size+val_size]
test_text = encoded[train_size+val_size:]
三、模型架构设计
3.1 滑动窗口生成
# 构建滑动窗口数据集
def create_dataset(sequences, window_length=100):
ds = tf.data.Dataset.from_tensor_slices(sequences)
ds = ds.window(window_length+1, shift=1, drop_remainder=True)