【Flux 生态全解析】爆款 Lora 模型 + ControlNet 插件 + 高效工作流合集(附 sampler 参数指南)

自Flux问世以来,这款AI绘画工具便迅速赢得了广大爱好者的青睐,其表现力已远超SD3,出图质量更是直逼Midjourney。更令人瞩目的是,Flux的迭代速度惊人,不仅接连推出了Flux.1的开发模型和个人模型,还快速上线了Lora模型和ControlNet模型,极大地激发了社区的创作热情。

在这里插入图片描述

为了让大家对Flux有一个全面的认识,本文将介绍下Flux基础模型、LoRA模型,以及ControlNet模型的使用方法。

因为Flux模型目前还不能在Stable Diffusion WebUI中使用,所以本文将以另一个常用的AI绘画工具 ComfyUI 为例进行讲解。同时为了方便大家测试,我在云环境也创建了一个ComfyUI的镜像,内置了Flux的模型和工作流,一键开启,不用费劲吧啦的部署。

Flux介绍

Flux是目前最大的AI绘画开源模型,有120亿个参数,原始文件有23GB那么大。听起来很吓人吧?但别担心,通过ComfyUI的支持,我们可以把模型压缩到12GB,并且它会自动检测显存来调整加载方式,这样我们在普通的消费级电脑上也能跑得动。

Flux 在视觉效果、提示的准确性、大小和比例的灵活性、排版和输出多样性方面,比Midjourney v6.0、DALL·E 3 (HD) 和 SD3-Ultra这些流行模型都要好。它可以在256到2048的宽分辨率范围内生成高质量、少冗余的图像,四肢表现也非常稳定。虽然对硬件有点要求,但效果真的很值。

Flux目前发布的 Flux.1 有三个版本,pro、dev和schnell。pro效果最好,但是闭源不开放;dev效果和pro差不多,虽然有商业使用的限制,但是可以免费测试(你懂的);schnell是个蒸馏模型,可以4步快速出图,效果虽然差点,但是也可以媲美Midjourney v6.0 和 DALL·E 3 (HD)。

ComfyUI在浏览器中启动后,我们可以先通过设置切换到中文界面:

在这里插入图片描述

然后点击“加载”旁边的小箭头,选择一个“Flux”工作流,点击“添加提示词队列”,就可以开始愉快的生成了。

在这里插入图片描述

如果你懂一些技术,也可以通过手动启动镜像的方式来体验ComfyUI,镜像地址在这里:

https://bbs.haoee.com/postDetail/618

Flux基础模型的使用

这里介绍两个基础模型的工作流:dev模型和schnell模型。

先看dev模型的工作流:Flux的工作流和其它SD模型的工作流没有太大的区别,都是:加载基础模型、编码提示词、定义潜在空间、采样器采样、解码器解码。

不太一样的就是这里增加了一个:Flux引导,Flux引导的目的是增强图片质量,生成训练时CFG为这个值的图像质量,但是不会降低生成速度;此时我们可以将CFG的值设置为1,用来提高生成速度,注意CFG的值不用太高,1-2.5即可;另外Flux.1还不能使用反向提示词。

在这里插入图片描述

再看schnell模型的使用:schnell 是个蒸馏模型,可以认为学习到了Flux原始模型的精华部分,这里不需要使用Flux引导,且只需要4步,图片的质量依旧很优秀。

在这里插入图片描述

另外这里用到的两个模型中都包含了提示词编码器CLIP和潜在空间解码器VAE,他们不用单独设置。

Flux LoRA模型的使用

再看这个LoRA模型的工作流。

这里使用了双CLIP编码器,并单独加载了CLIP模型,SD3也使用了双CLIP编码,CLIP1可以看做是对标签类提示词的编码,CLIP2是对自然语言提示词的编码,这样编码对图片的质量比较好。另外我们还使用了“CLIP文本编码Flux”这个编码器,它自带Flux引导,就不用单独添加Flux引导节点了。

因为单独加载了CLIP模型,这里使用了UNET加载器来加载Flux的基础模型,加载LoRA也是使用的Flux专属节点,后边的采样器也是专为Flux量身定制的Xlabs Sampler。

在这里插入图片描述

Flux ControlNet模型的使用

目前有三个适用于Flux的 ControlNet,分别是 Canny、Hed 和 Depth。这里以Canny为例:

在这里插入图片描述

工作流的左边是ControlNet的处理,右边是Flux采样部分的节点。

其中ControlNet的预处理器还是可以使用我们之前在SD1.5和SDXL使用的预处理器,但是加载和应用ControlNet模型要换成Flux专用的。

右侧的Flux采样使用的节点上边都介绍过了,这里就不废话了。有看不懂的地方,可以留言。

ControlNet模型正在快速迭代中,目前已经发布到了V3版本。

资源下载

以上工作流包括使用的模型,发消息“Flux”到公/众\号“萤火遛AI”即可下载。

为了方便大家入门,我整理了一批工作流,包括基本的文生图、图生图、ControlNet的使用、图片的处理、视频的处理等等,发消息“工作流”到公/众\号“萤火遛AI”,即可全部领取。

在这里插入图片描述

资料软件免费放送

次日同一发放请耐心等待

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 配置与使用多个ControlNet进行工作流处理 在FLUX模型中支持多种类型的ControlNet模块,这些模块可以被组合起来用于增强图像生成的效果。当涉及到配置并使用多个ControlNet时,主要通过定义不同ControlNet的功能角色来完成特定的任务需求。 对于想要利用`Flux ControlNet Depth`以及其他类型的ControlNets构建一个多ControlNet工作流来说,可以通过设置参数指定各个ControlNet的作用范围及其权重[^2]。具体操作如下: #### 定义多ControlNet架构 首先,在初始化阶段就要明确哪些ControlNet会被加载到网络结构之中。这通常是在创建实例的时候完成的,比如下面这段Python代码展示了如何同时引入两个不同的ControlNet——一个是负责深度感知(`Depth`),另一个可能是边缘检测(`Canny Edge Detection`)。 ```python from flux_model import FluxModel, ControlNetWrapper depth_controlnet = ControlNetWrapper('controlnet_depth') edge_detection_controlnet = ControlNetWrapper('controlnet_canny') model = FluxModel(control_nets=[depth_controlnet, edge_detection_controlnet]) ``` 这里假设`FluxModel`类接受一个名为`control_nets`的列表作为输入之一,该列表包含了所有要使用的ControlNet对象。 #### 调整各ControlNet的影响程度 接着就是调整每一个ControlNet在整个合成过程中的影响力大小。这种调节通常是通过对每个ControlNet分配相应的比例因子实现的;也就是说,可以让某些ControlNet对最终输出有更大的贡献度而让其他的相对次要一些。这部分逻辑可能体现在训练过程中动态改变或是静态设定好固定的比例关系。 ```python # 假设set_weight方法用来给定某个ControlNet的重要性系数 depth_controlnet.set_weight(0.7) # 更重视深度信息 edge_detection_controlnet.set_weight(0.3) # 边缘特征辅助作用 ``` 上述例子表明了给予深度控制网更高的优先级(即更大影响),而在一定程度上也保留了一些来自边缘检测的信息以帮助改善细节表现。 #### 执行带有多个ControlNet工作流 最后一步则是执行这个已经配置好的含有多个ControlNet工作流。一旦所有的准备工作都完成了之后,只需要调用相应的方法即可启动整个流程,并获得预期的结果图片或其他形式的数据输出。 ```python output_image = model.process(input_image) ``` 综上所述,就是在FLUX框架内实现多ControlNet协同工作的基本方式[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值