MIT18.06学习笔记 - Lecture 5: Transposes and Permutations

这个系列文章是我重温Gilbert老爷子的线性代数在线课程的学习笔记。
Course Name:MIT 18.06 Linear Algebra
Text Book: Introduction to Linear Algebra
章节内容: 2.7


课程提纲
1. Transpose and Symmetric matrices
2. Permutation Matrices
3. PA=LU P A = L U Factorization with Row Exchanges

课程重点

Transpose and Symmetric matrices

Transpose of A A is denoted by AT. The columns of AT A T are the rows of A A : (AT)ij=Aji
Rules for transposes: (AB)T=BTAT ( A B ) T = B T A T and (A1)T=(AT)1 ( A − 1 ) T = ( A T ) − 1 .
Symmetric matrices: AT=A A T = A .
RTR R T R and RRT R R T is always symmetric, R R is any matrix:

Symmetric matrices in elimination A=LDLT
If A=AT A = A T is factored into LDU L D U with no row exchanges, then U U is exactly LT. The symmetric factorization of a symmetric matrix is A=LDLT A = L D L T :

Permutation Matrices

A permutation matrix P P has the rows of the identity I in any order. PT P T is also a permutation matrix and product P1P2 P 1 P 2 is again a permutation matrix. There are n! n ! permutation matrices of order n:

p1 p − 1 is also a permutation matrix and always the same as pT p T : p1=pT p − 1 = p T .
In all case, a single row exchange is its own inverse (transpose). If we repeat the exchange we are back to I I . But for P32P21, the inverses go in opposite order: P21P32 P 21 P 32 .

PA=LU P A = L U Factorization with Row Exchanges

If A A is invertible, a permutation P will put its rows in the right order in advance (so that no exchanges are needed for PA P A ) to factor PA=LU P A = L U :

The matrix PA P A has its rows in good order, and it factors as usual into LU L U :

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值