这个系列文章是我重温Gilbert老爷子的线性代数在线课程的学习笔记。
Course Name:MIT 18.06 Linear Algebra
Text Book: Introduction to Linear Algebra
章节内容: 2.7
课程提纲
1. Transpose and Symmetric matrices
2. Permutation Matrices
3.
PA=LU
P
A
=
L
U
Factorization with Row Exchanges
课程重点
Transpose and Symmetric matrices
Transpose of
A
A
is denoted by . The columns of
AT
A
T
are the rows of
A
A
:
Rules for transposes:
(AB)T=BTAT
(
A
B
)
T
=
B
T
A
T
and
(A−1)T=(AT)−1
(
A
−
1
)
T
=
(
A
T
)
−
1
.
Symmetric matrices:
AT=A
A
T
=
A
.
RTR
R
T
R
and
RRT
R
R
T
is always symmetric,
R
R
is any matrix:
Symmetric matrices in elimination
If
A=AT
A
=
A
T
is factored into
LDU
L
D
U
with no row exchanges, then
U
U
is exactly . The symmetric factorization of a symmetric matrix is
A=LDLT
A
=
L
D
L
T
:
Permutation Matrices
A permutation matrix
P
P
has the rows of the identity in any order.
PT
P
T
is also a permutation matrix and product
P1P2
P
1
P
2
is again a permutation matrix. There are
n!
n
!
permutation matrices of order n:
p−1
p
−
1
is also a permutation matrix and always the same as
pT
p
T
:
p−1=pT
p
−
1
=
p
T
.
In all case, a single row exchange is its own inverse (transpose). If we repeat the exchange we are back to
I
I
. But for , the inverses go in opposite order:
P21P32
P
21
P
32
.
PA=LU P A = L U Factorization with Row Exchanges
If
A
A
is invertible, a permutation will put its rows in the right order in advance (so that no exchanges are needed for
PA
P
A
) to factor
PA=LU
P
A
=
L
U
:
The matrix
PA
P
A
has its rows in good order, and it factors as usual into
LU
L
U
: