005基于Hilbert振动分解的神经网络癫痫发作预测-2020

Hilbert Vibration Decomposition-based epileptic seizure prediction with neural network

 A B S T R A C T

癫痫是世界上最突出的大脑疾病之一,癫痫患者会突然发作,这对他们的生活有很大的负面影响。因此,癫痫发作预测系统在克服癫痫患者所经历的困难方面是必不可少的。本研究设计并演示了一个非患者特异性癫痫发作预测系统,该系统使用希尔伯特振动分解(HVD)方法对来自CHB-MIT数据库的10名患者的表面脑电图记录进行分析。利用滑动窗口的HVD将18个通道的脑电信号分解为7个子分量。然后,这些来自所有通道的子组件被用于计算将被输入MLP分类器的特征。分类过程同时对所有患者执行,并且不向分类器传递有关患者身份的信息。在分类阶段之后,开发了一种评估预测发作频率的报警算法。患者的分类敏感性平均为19.89%。该敏感性在120分钟内平均提高到89.8%,在报警创建后,患者的癫痫预测时间为4分钟,平均误报率为0.081/小时。

1. Introduction

癫痫是一种脑部疾病,其特征是由于部分或整个大脑[1]的神经元过度激活或同步,导致大脑活动突然异常。据估计,全世界有5000多万人患有癫痫,约为每1000人中有8人,其中约有一半的人患有活动性癫痫发作[2]。癫痫发作对患者的影响从轻微的行为变化到完全失去意识和肌肉控制[3]。因此,癫痫患者在日常生活中会不同程度地经历与癫痫发作相关的不适。癫痫病人发生事故和受伤的风险更高,仅仅是因为癫痫发作相关的事件[4],以及抑郁症[5]的高发率。据报道,与健康儿童相比,癫痫儿童遭受的伤害更多,因此需要父母监督[6]。癫痫患者在怀孕期间的风险也更大。在妊娠中,如果母亲是癫痫,则更有可能导致意外的情况发生,如流产或产后并发症。由此可见,癫痫发作对患者及其社交圈造成了严重的困难。

虽然抗癫痫药物(AED)经常应用于新诊断的癫痫患者,但最近的医学文献指出,AED完全控制癫痫的成功率约为64%,自2000年以来没有变化[8-10]。在剩余的患者池中,约25%或约70%的耐药癫痫患者在接受癫痫手术后实现了长期癫痫控制[11]。从某种意义上说,这些比率是有希望的,因为大约90%的癫痫患者在医疗干预下能够享受无癫痫发作的自由。另一方面,这一信息也意味着大约10%的癫痫发作患者对治疗没有反应,这一人群约为250万人。这些数字揭示了癫痫控制的其他预防性方法的必要性。如[12]所指出的,这些方法如果成功并适用于对患者的低负荷,可能会显著增加癫痫发作对患者生活的不良影响。为此,人们广泛研究的课题之一是癫痫发作检测。本研究领域的重点是癫痫发作阶段的检测,通常通过监测癫痫脑[13]的脑电图(EEG)记录。由于脑电图记录提供高时间解,采样率通常在250 ~ 2000 Hz之间,可以在记录中捕获癫痫的特征,因此脑电图是癫痫信号记录的首选方法。

一项研究应用离散小波变换对EEG信号进行分解,并使用二进制分类器实现了97%的准确率,以检测记录中的模式。在[14]中,经验模态分解(EMD)在从脑电图[15]等非线性和非平稳信号中提取子成分方面表现良好,被用于分解正常、间歇和间歇脑电图记录。然后利用均值和标准差等统计特征,利用支持向量机(SVM)对提取的子成分进行分类,分类精度在85%以上另一项研究提出使用EMD对EEG信号进行分解,以区分发作性振荡和无发作性振荡,然后用支持向量机[16]进行分类。这种二元分类视角使用不同的支持向量机分类器核函数获得了88%以上的准确率。以方差、偏度和峰度为特征的神经网络分类器,采用EMD方法对癫痫脑电图多类分类问题进行了研究,准确率达到100%。另一种信号分解方法希尔伯特振动分解(HVD)也被提出用于分解非线性和非平稳信号[17],特别用于机器故障诊断[18]、心电图信号基线漂移去除[19]和系统识别[20]。首次将HVD应用于脑电信号,利用脑电信号的δ、θ和α波段进行癫痫发作的最小二乘支持向量机分类器,分类精度达到97.6%[21]。

在文献中也有许多研究从脑电图记录来预测癫痫发作的问题。Iasemidis & Sackellares的研究表明,大脑皮层的脑电图记录在从发作间期到发作前和发作后状态[22]的过渡过程中呈现混沌-有序-混沌模式。他们能够通过估计脑电图记录中最大的李亚普诺夫指数随时间的变化来量化系统的混沌。随后,Mormann等人研究了脑电图信号在发作间期和发作前间期[23]相同步的差异。使用平均相位相干性作为同步度量,他们发现平均相位相干性稳步增加导致癫痫发作。Iasemidis等人利用他们之前的研究结果,基于最大李亚普诺夫指数的收敛性来预测癫痫发作,实现了83%的灵敏度,错误预测率为0.17/h[24]。Gigola等人使用基于小波的方法来估计癫痫患者脑电图信号[25]累积能量。他们的框架预测了13次癫痫发作中的12次。Costa等人进行了一项研究,报告了几个网络对来自一个病人的数据的训练,并评估了另一个病人的表现。[26]。研究结果表明,当分类器在一个病人身上训练和测试,或在两个病人身上训练和测试其中一个病人。准确率达99%。然而,针对一名患者训练的分类器无法在另一名患者身上显示出如此高的性能,因为在这种情况下,结果的准确性降至2%。在[27]中,Dourado等人进一步评估了患者之间癫痫模式的不良转换。他们报告了类似的结果,当一个网络在一个病人身上训练并在另一个病人身上测试时,敏感度得分低至0。Schelter等人测试了不同癫痫发作预测技术的统计学意义,并报道了平均灵敏度为70%,错误预测率为0.15/h[28]。

FeldwischDrentrup等人报道了一种有前途的新方法。[29]。本研究报道了平均相位相干和动态相似指数方法的“与”和“或”组合可以提高两种方法各自的性能,“与”方法的灵敏度值从约25%提高到43.2%,“或”方法的灵敏度值提高到35.2%。Chisci等人通过自回归建模脑电图信号来解决这个问题,并使用支持向量机进行分类,其中分类特征为自回归系数[30]。他们的研究报告显示,100%的敏感性,误报率低至0/h。为了减少在对早熟期进行分类时需要考虑的特征数量,Direito等人评估了几个特征,以确定这些特征[31]的广义预测能力。他们报告说,在一组三名患者身上,他们发现了不同的癫痫发作前模式,这再次表明需要针对患者量身定制算法。Feldwisch-Drentrup等人提出了一个不同的观点,他们在一组21名患者身上提出了大量的假警报,随后出现了亚临床癫痫发作[32]。这将表明存在一种潜在模式的可能性,这种模式发生在预期内外,而学习算法实际上能够检测到这些模式。Song等人在研究中也遵循了分类路径,使用极限学习机作为分类器,基于样本熵的特征,获得了86.47%的灵敏度和83.80%的特异性[33]。另一项研究采用了统一多个线性单变量特征的方法,表明特征的集合确实能够提高分类灵敏度,报告灵敏度高达100%[34]。Teixeira等人报道了一项比较研究,展示了几种技术在278名欧洲癫痫数据库患者身上的表现,以患者特异性的方式[35]。他们能够在不同的灵敏度下获得0.15 /小时的低虚警率。他们还显示了几个因素对预测性能的重要性,如癫痫定位和测试持续时间。Parvez和Paul利用当前和参考脑电图信号之间的相位相关性来识别脑卒中前状态[36]。该方法预测准确率为91.95%。Yang等人再次应用分类视角,使用从脑电图记录的滑动窗口中提取的排列熵。再次使用支持向量机,他们获得了94%的平均灵敏度,错误预测率为0.111/h[37]。Yuan等人使用扩散距离度量对颅内癫痫脑电图记录进行了贝叶斯线性判别分析(BLDA)以确定颅前脑电图周期,获得了85.11%的灵敏度和0.08/h[38]的错误预测率。这些研究清楚地表明,癫痫发作之前,人类大脑发生了变化,这些变化可以在脑电图记录中捕捉到,并可以通过某些措施进行评估。

在这项研究中,我们设计了一个系统,使用希尔伯特振动分解(HVD)对信号进行分解,以便从癫痫表面脑电信号中提取特征,并利用这些特征对癫痫发作前和非发作前进行二进制分类,并根据预测提供警报。本研究的另一个目的是在癫痫发作预测的背景下评估传统分类的性能,并讨论仅分类的方法是否合适,或者诸如警报生成之类的后处理步骤是否有利于提高系统的整体性能

2. Methods

在这项研究中,我们提出了一种多步骤的程序,以便从子分量的脑电信号中检测发作前阶段第一步是对多通道脑电信号进行基于窗的分解,利用文献[39]中对脑电信号进行的HVD分解来检测癫痫的状态。我们采用的窗口长度为16s,重叠率为50%。在分解阶段之后,进行特征提取,以产生用于分类过程的数据,其中使用神经网络分类器。图1表示了所提过程的算法流程。

 2.1. Data and preprocessing数据和预处理

本研究使用的数据是波士顿儿童医院[40]收集的儿童患者的表面脑电图记录,在PhysioNet[41]上公开提供。在这个数据集中,有24个病例的连续和非连续记录,每个病例包含9到42个多通道脑电图记录,共664个记录文件。这些录音是在16位分辨率256hz采样频率。虽然大多数记录包含23个通道,但也有包含心电图(ECG)或迷走神经刺激信号的情况。这个选定的通道集与Shoeb和Guttag [42]使用的通道集相同。10–20电极放置系统的通道定位如图2所示。图3示出了来自名为chb01的病例的记录的示例部分。

在这项研究中,我们使用了数据集中的10个案例。这些案例是随机选择的,可以与它们在原始数据集中的标签一起列为;chb01、chb02、chb07、chb08、chb11、chb13、chb16、chb20、chb21和chb23。每个信号都经过带阻滤波,阻带为57–63Hz和117–123Hz,以消除记录中的线路振荡。研究中使用的通道与[43]中使用的通道相同。标记过程被定义为在所有癫痫发作前的30分钟内进行标记。标记过程被定义为在所有癫痫发作前30分钟内分配发作前标记。这一发作前阶段是由数据本身和先前关于确定发作前阶段的研究决定的。在这个数据集中选择的脑电记录包括发作之间只有35分钟的发作,因此延长的发作前时间超过这个持续时间将导致前一次发作的发作或发作后状态之间的重叠。30分钟的时间已经在[44,45]中进行了评估,并已被证明是发作前标记的合适选择。这段时间以外的所有数据都被标记为非前期数据,这就产生了一个二分类问题。

 数据集的详细描述如表1所示。

 2.2. 希尔伯特振动分解

本研究采用Feldmann提出的用于提取非平稳信号[46]中AM/FM调制子分量的Hilbert振动分解方法进行特征提取。该方法依赖于公式(1)中分析信号的计算和常用的同步解调方法来估计信号包络,因此避免了数据驱动的方法,如经验模态分解(EMD)[47]所采用的方法,这是另一种广泛应用于非平稳信号的分解技术。此外,如[48,49]所示,HVD方法更适用于频带聚集在一起的窄带信号,例如具有delta (< 4hz)、theta (4 - 7hz)、alpha (8 - 15hz)和beta (16 - 31hz)的常规频带的EEG信号。HVD的另一个可取的方面是能够改变低通滤波器截止频率,以改变提取的单组分的频率分辨率。因此,可以得到在脑电信号特征频带[46]处振荡的单分量。

p。v是柯西主值,以避免不连续。希尔伯特变换就像一个滤波器,它被-Π/2改变相位s(t)。多分量信号被表示为多个单分量振动的结构,如式(3)所示。HVD方法旨在估计Wk,ak,∀k这是每个单分量的瞬时频率和振幅。

 在[46]中已经表明解析信号的瞬时振幅At和频率Wt 。

 

 两者都由两个部分组成,一个慢振荡部分一个围绕它的快振荡部分。

如果满足某些条件,Wt快速变化的部分平均值为零,只留下能量最大的部分来确定瞬时频率值。这个中心条件允许低通滤波,以平均瞬时频率,以获得慢振荡分量。对于包络检测,HVD方法采用同步解调,根据参考频率值估计分量的正交和同相投影,并计算信号包络作为先前估计的投影的平方和。

带有参考频率w(t)的s(t)单分量信号的同相投影和求积投影

单分量信号的瞬时幅度、频率和相位

 在(5)和(6)中所示的投影内的快速振荡分量具有 通过采用具有合适截止频率的低通滤波器来消除。因此,可以估计单分量信号的相位--因此,频率--和幅度。HVD方法的迭代方法可以在下列步骤中列出。

  

1.利用解析信号估计最大能量振动的平均瞬时频率,并根据该频率进行低通滤波

2.将能量最大的参考分量的瞬时频率设置为上一步计算的瞬时频率,计算包络

3.从信号中减去最大的能量分量

我们在本文中以基于窗口的方式使用HVD过程。设置了信号上的滑动窗口,每个窗口捕获信号的16S部分,具有50%的重叠。然后用具有4赫兹低通滤波截止频率的HVD方法对这一部分进行分解,以提取7个单分量。对所有17个EEG通道进行分解,每个窗口产生每个患者17×7=119个子分量。所有这些单分量都用于第2.3节中描述的特征的计算,以便构建一个全面的数据集来评估分类器。

 2.3. Feature extraction 特征提取

本部分中解释的特征是根据在每个EEG信号窗口中提取的每个子分量来计算的。这些特征被用来训练神经网络分类器,目的是在二进制分类意义上区分发作前和非发作前的脑电片段。

 2.3.1. Variance方差

方差是衡量数据如何从平均值向外扩散的量度在脑电信号中,方差表示幅度的变化,因此传达了大脑总体状态的信息,例如与描述低电活动的平均值相差较小,反之亦然。每个信号窗口的方差计算如下,Xi是第i个点,X~ 是 第n个窗口第m个脑电亚成分。L是信号片段的长度, 基于窗口意义上的长度等于256×16=4096.

2.3.2. Skewness偏斜度

偏度是表示分布不对称性的离散度[50]。在EEG信号的情况下,负或正偏度分别反映较大或较小幅度值的优势。第n个窗口第m个亚成分的偏度是如公式8所计算的。

2.3.3. Kurtosis峰度

通过每个窗口的峰度来测量EEG信号分布的平坦度或峰度[51]。从这个意义上讲,鉴于脑电波峰值与癫痫发作的关系,峰值的信息依赖于脑电信号癫痫发作状态。第 n个窗口第m个亚成分的峰值如公式9所计算。

2.3.4. Sample entropy样本熵

样本熵(SampEn)是近似熵(ApEn)的一种修正,是为分析生理时间序列而提出的[52]。

作为一种熵变量,SampEn是复杂性和自相似性的度量。样本En被定义为m个点相似的两个信号段在以下数据点也相似的条件概率的负自然对数。在SampEn中,信号中的精确匹配被忽略,消除了近似熵中的偏差,其中测量在不同的条件下改变[52]。

SampEn自提出以来,已经有了一些方法来降低SampEn值的算法复杂度和计算时间。计算具有O(n²)复杂性的SampEn所采取的步骤如[33]所示,如算法1所示。

 2.3.5. Spectral power频谱功率

脑电信号的频谱功率表示信号的功率谱密度(PSD)之和。PSD是信号内每个频率的功率值,因此,它携带关于EEG信号的状态的信息。在癫痫的背景下,特征脑电频段的频谱功率通常被研究[53,54]。在本研究中,由于我们使用HVD方法对脑电信号进行分解,所以我们简单地计算了每个子分量的功率。每个子分量的频谱功率被计算为功率谱密度的对数和。

 x(n,m)代表第m个亚信号的第n个窗口,PSD是使用韦尔奇方法估计PSD的功率谱密度算子。[55].

 2.3.6. Higuchi’s fractal dimension Higuchi分维

信号的分维指示信号在时间域中的自相似性的量,并由此扩展到信号的复杂性[56]。这个度量值在1和2之间,其中1表示直线,2表示二维形状,例如正方形。Higuchi的分形维数测度是分形维数度量[57]的变体。与其他分形维数变量[58]相比,由于分形维数具有非线性和非平稳性质,更适合于生理信号的分析。特别是,对吸引神经元活动的信号的分析已被证明受益于使用Higuchi的分形维数[59]。采用[56]中描述的算法,计算HVD从脑电图信号中提取的所有子成分的所有窗口的Higuchi分形维数,取最大尺度Kmax = 8;

2.4. Neural network classifier 神经网络分类器

在特征提取阶段完成后,我们使用神经网络分类器对EEG信号的癫痫状态进行二元预测,即0表示非癫痫状态,1表示癫痫状态。我们使用的神经网络体系结构是一个具有5个隐藏层的全连接网络。所有隐层均包含100个神经元,除输出层外,每隐层的激活函数选择双曲正切(tanh)。输出层采用softmax激活功能。没有经验法则可以确定MLP[60]的最佳超参数。因此,我们通过尝试几种不同的MLP架构,使用“梯度搜索”来为本研究找到最优架构[61]。MLP的训练通过反向传播和ADAM优化器进行,学习速率为0.001,epsilon值为1e−7[62]。

通过10倍交叉验证的方法获得预测结果,以观察数据集中每个样本的预测结果。

由于发作前类与非发作前类之间存在较大的类不平衡问题,在分类过程中引入了类权值。从分类器的角度出发,选择类权重来平衡每个类中的样本数量。权重按公式(11)计算。

Wi 代表 i类的类权重,mi代表属于i类的样本数量,mi`代表 i类除外 的样本数量。通过使用这样的权重,使得MLP分类器感知来自两个类别的观察的数量相等。

MLP分类器的输入形式以下列形式提供

 是由HVD提取的单分量信号的数目,根据该数目计算其余特征,1是首先提取的单分量信号。该特征被作为分类变量引入到分类器中。该分类器在所有患者的数据上进行交叉验证,并且特征与患者身份无关。因此,我们确保分类器没有办法了解哪些数据属于哪个患者,从而使该过程不特定于患者。

2.5. Postprocessing for alerts 警报的后处理

为了发出即将到来的癫痫的警报,我们在预测上使用了滑动窗口。这里,窗口大小被选择为30个没有重叠的预测,因此,与特征提取阶段的窗口长度相结合,将癫痫发作预测范围限制在最小8×30=240秒,或4分钟。4分钟的后处理算法窗口大小是通过利用它们的虚警/小时度量来评估每个候选窗口大小的性能来经验地确定的。

创建警报的方法是基于频率的。对于每30次预测,发作前预测的数量(1)被计数并除以30,以便将值限制在[0,1]的范围内。

之后,我们使用0.9的阈值来决定何时发出警报。这个阈值是根据对所有情况下看到的频率值的经验观察来选择的。换句话说,当30次预测中有27次是发生前的时候,就会发出警报。

然而,这种方法非常频繁地发出警报,特别是在发作前时期。因此,对算法施加了时间限制,在发出警报后,不能再次发出警报。通过这种做法,可以防止警报的“垃圾邮件”。因此,癫痫患者可以在日常生活中使用的真实系统是近似的。在本研究中,通过观察发作之间的间隔和警报的频率,将这段静默期选择为1200s。此警报生成的后处理算法类似于先前在[63]和[34]中使用的‘FirePOWER’算法。关于从chb01记录的第一单分量提取的特征,在图4中说明了在具有和不具有静默时段的情况下由该算法引起的警报。

 (A)在chb01上发出的警报,没有静默期。可以看到,在发作前期间,这种情况变得频繁

 (B)具有静默期的chb01上发出的警报。静默期可以阻止警报垃圾邮件,同时也涵盖了该患者的所有三次癫痫发作

图4.从chb01的第一个HVD子组件提取的特征。红点表示神经网络分类器预测为发作前的窗口。绿线表示癫痫发作开始蓝线表示发出警报的点

2.6. 10 - fold cross validation 10倍交叉验证

10倍交叉验证(10倍CV)是一种性能评估技术,它将所有数据用于训练和测试目的。已表明,10倍CV方法与其他评价方法(如抵制率[64])受以下随机因素影响相比较小。在10倍CV中,数据被随机分成10个大小相等的部分(折叠),候选模型使用其中的9个折叠进行训练,并在剩下的一个上进行测试。被测折叠层的预测被存储在一个矢量中,这一过程重复十次,每一步使用不同的褶皱作为测试数据。因此,模型对所有数据的预测都存储在一个向量中。在合并这些向量之后,可以根据问题的性质使用某些度量,并使用所有数据和对所有数据的预测来评估候选模型的性能。10倍CV技术如图5所示。

如图3所示,我们将每一叠的预测数据存储到所有十轮完成,然后将所有存储的预测数据与原始数据进行性能评估。此外,我们用不同的随机数生成器种子重复图3所示的过程10次,计算得到的10次迭代结果的均值和相对标准差。通过10倍CV重复10次,我们能够检验每种提出的方法对随机性的依赖性[65]。因为这些在10个大小相等的折叠中的元素是随机选择的,所以我们在10倍CV的每次迭代中改变了Python中的随机数生成器种,以检查候选模型是否能够预测目标类并获得相同的成功,而不管不同的随机分割。我们计算了10倍CV这10次重复的平均值和相对标准差(%),以显示模型是否成功预测目标类别以及模型对随机因素的抵抗程度。

3. Results

为了衡量所提方法在患者间的泛化性能,我们以相同的方式在所有患者上使用该方法,即通过滑动窗口提取特征并通过HVD进行分解,并对MLP分类器进行10次交叉验证。在获得交叉验证预测后,计算每个患者的敏感性和特异性指标。在获得交叉验证预测后,计算每个患者的敏感性、特异性和误报/小时指标。

T是脑电信号记录的总时长,Q是记录中发作的总次数,p是所选警报范围的持续时间。TP(真阳性)对应于来自特定类别的测试样本的正确识别。FN(假阴性)是指预测不是测试样本所属的类,即目标类。TN(真阴性)发生在基于非目标类的样本的预测,它们被归类为非目标类。FP(假阳性)发生在样本被错误地预测为目标类时。敏感度衡量的是被正确识别的实际阳性的比例。特异性衡量被正确识别的实际阴性的比例[66]。误报/小时度量用于调查所提议的框架在一个小时间隔内发生的平均错误预测。

 从表2可以看出,提出的非患者特异性方法执行低于常规阈值。特别是在chb11中,我们看到0敏感性,这意味着MLP分类器没有正确的预测。分类器在chb01病人上的表现可以说很好,在chb01病人上达到了合理的灵敏度。

 如[28]和[67]所示,使用替代发作时间技术评估框架结果的统计显著性。为了简单起见,在补充材料中包含了所有时间代理的性能评价结果。一般结果如图6所示。所有50次替代发作次数的随机化约束被选择为(i)发作总次数保持不变,(ii)记录的两半发作次数相等,(iii)发作发作之间的时间间隔保持在至少35分钟,以防止发作前期和其他阶段之间的重叠

图6所示。代理癫痫发作次数与每位患者原始数据的敏感性评分蓝线表示所有患者结果的平均敏感性来自原始数据。橙色线代表所有50次代理癫痫发作的所有患者结果的平均敏感性。

 当考虑到图6所示的结果时,可以看到所提出的框架在原始发作时间上表现最佳。因此,使其与随机代理数据显著不同。

值得注意的是,即使使用类权重实现,单靠分类过程也无法成功区分前置和非前置EEG信号。我们认为,这一问题的根源在于不同患者的癫痫脑电图记录在发作前阶段是不相似的这意味着一个患者的癫痫脑电图段的单一特征的变化在另一个患者的脑电图段是不相同的。例如,让我们考虑从患者chb01和chb23记录的第一个单成分中提取的特征,如图7所示。

 

 图7所示。从(a) chb01和(b) chb23的第一HVD子组分中提取的特征。

绿线表示发作,洋红色部分表示标记为发作前期的信号点。

在图7(a)中,我们可以看到,对于chb01的第一个单分量,它与可以明显观察到的非预测段存在差异,特别是在谱功率和Higuchi的分形维数特征上。这种变化使发作间期和发作前期甚至可以用肉眼进行分类。然而,在7(b)中,可以看到患者chb01没有发生相同的变化。这种情况下的预测差异无法手动观察到,但可能更微妙。这使得分类过程更加困难,特别是在分类器没有提供关于患者身份的信息的情况下。

在我们的非患者特异性方法中,由于我们的目标是同时对所有患者的发作前期进行分类,分类器会接触到这两个部分,并接触到更多具有相同标签的部分,而这些部分显然很少存在相似性。在表2的分类分数中也可以看出这种预测趋势的差异。chb01的灵敏度最高,为70.3%,chb23的灵敏度最高,为24.3%。同样的情况也适用于所有其他病人。可观察到的chb01的预测趋势在其他患者中没有明显表现出来。

事实上,有许多不同类型的癫痫可以在大脑的许多不同区域或整个大脑中引发癫痫发作,这并不是一个不寻常的发现[3,68]。除此之外,患有某种类型癫痫的患者也会经历不同类型的癫痫发作[69]。这些先前在癫痫领域所做的观察表明,非患者特异性算法可能无法从患者的脑电图信号中分辨出癫痫的前兆模式。此外,脑电信号通道的定位也会影响癫痫发作的分类性能。

图8显示了癫痫发作对不同通道的分类敏感性。在图8(a)中,我们可以看到大部分与发作前活动相关的信息都包含在患者大脑的顶枕区,一些发作前活动主要出现在额叶和颞叶。图8(b),我们可以看到发作前活动主要包含在右额叶皮层,但在整个大脑中仍然观察到最少的活动。从图8(c)可以看出,除了左颞叶、右顶叶和右额颞叶外,整个皮层没有明显的发作前活动,而右侧额颞叶传递的信息最多。图8所示的所有三个患者都显示了在大脑不同区域的发作前活动,分类器可以清楚地看到。

所有这些因素,即癫痫的类型、癫痫发作的类型和病灶脑区域,在患者之间是不同的。这使得一个非患者特定的分类过程不是简单的挑战。因此,我们得出结论,在HVD非患者特异性发作预测的背景下,依赖纯机器学习分类器是不现实的,相反,需要健壮的前/后处理。这可以在表3中看到,使用警报算法后的灵敏度评分。这些结果对使用传统分类方法之外的其他方法的性能改进具有重要的指示意义。

报警过程结束后,chb01的报警灵敏度最低提高了29.7%,chb11的报警灵敏度最高提高了100%。这种灵敏度的大幅提高表明,尽管分类灵敏度可以被认为很低,或者正确预测的数量不在理想的范围内,但正确预测的位置往往比不正确的位置要高。我们特别想讨论由于后处理算法而增加的chb11的灵敏度。从表1可以看出,chb11的灵敏度从0.04%提高到99.96%。这种增加的敏感性可以解释为在达到标记的预警期之前发出警报,以及本研究采用的120分钟警报水平。这导致分类器给出的假阳性预测被后处理算法检测到在120分钟报警范围内频率增加。从实际的角度考虑了这种警报水平和预报持续时间的非对称选择。我们选择这个警报水平是为了包括分类器预测的不在标记的预警周期内的预警点。因此,由于这些原因,可以将发生在chb11上的这个特定情况视为一个边缘情况,在今后的应用程序中不应以其他方式进行预测。

让我们观察chb01对第一个提取子成分特征的预测和警报位置。

 图9所示。chb11的警报和分类器预测说明了第一个子组件的特点。红点表示分类器的预测。垂直的绿色线表示发作,垂直的蓝色线表示发出警报。

在图9中,可以看到预测分布在除预测阶段外的整个信号中,这占0%的分类灵敏度。然而,可以看到,即使分类器没有给出正确的预测预测,报警算法在癫痫发作前接受的120分钟范围内提供了4个报警,而在非预测期间只提供了2个假报警。这表明,即使单凭分类器的性能不能确定正确的预测点,但预测预测在0.9阈值以上的频率仍然会在预测周期临近时(而不是在预测周期期间)出现增加,因此使报警算法能够提供高灵敏度和低虚警率。这一现象可能源于以下事实:非患者特异性分类方法将从其他患者的观察中获得的决策标准强加到本例中的chb11上,因此增加了标记为预知的区域之外的预知预测的频率,因此进一步表明,单独的分类可能无法提供高性能的癫痫预测。但配合合适的后处理技术,做出正确的癫痫预测是可能的。

此外,必须指出的是,本研究是从广义的角度考察发作前状态与其他状态的可分离性。提出的预测框架的目的是识别癫痫状态转变的现象,而不是为每个患者单独获得最好的可能结果,或者更清楚地,调查可以通过我们的框架提取的患者之间共有的癫痫发作前期阶段的共同指标。正是由于这个原因,我们没有分别训练我们的算法针对每个病例,也没有向分类器提供患者特定的信息。从某种意义上说,我们提出的框架试图学习预设状态固有的广义模式。

此外,为了达到相同的目标,我们将本研究提出的框架的癫痫发作预测性能与其他采用不同方法的研究进行了比较(表4)。从表4中可以看出,提出的框架能够优于使用相同性能标准的其他研究。我们的框架可以被视为提供了更大的灵敏度和更低的误报率,除了[38],其中误报率相等。然而,提出的框架在灵敏度度量上增加了大约4%。因此可以肯定地说,在我们的框架中使用的后处理步骤和HVD方法确实增加了以前文献中报道的关于从脑电图信号预测癫痫发作的结果

当涉及到表4时,分析结果并讨论性能差异的可能原因是很重要的。当我们检查[24]和[28]的方法时,可以看到对Lyapunov指数和平均相位相干采取了阈值化而不进行信号分解。我们的框架的性能不同于这些研究,因为我们使用了带有MLP分类器的HVD方法来进行预测。这证明了HVD和机器学习分类的使用确实优于更传统的方法。在[30]的情况下,即使使用支持向量机(SVM)分类器,特征提取方法基于自回归建模。这意味着HVD方法能够更好、更准确地表示EEG特征,因此更适合于分类器的特征提取。在[38]中使用小波分解进行特征提取。尽管这种分解方法通常用于脑电图信号,但提出的框架的更高性能意味着HVD方法分解允许子信号携带更多关于脑电图记录事件的信息,可以使用分类器进一步评估在[58]中,振幅分布直方图与支持向量机分类器一起使用,并使用发射功率算法以生成警报。这种方法与本研究中使用的方法之间的主要区别是使用几种不同类型的特征和MLP分类器而不是支持向量机,以及使用HVD。这表明HVD具有多种特征的组合,其性能优于原始信号本身的单一特征。

由于数据集严格包含儿童患者,我们暂时将这些发现的可行性限制在儿童癫痫上。

然而,对于所提议的一套用于成人癫痫的方法也没有明确的限制。由于HVD方法在分类和后处理方面的表现,该方法有望扩展到其他患者群体。

4. Conclusion

在本研究中,我们设计、应用并演示了一个癫痫发作预测系统,该系统利用HVD从PhysioNet上的CHB-MIT数据库的脑电图记录的子成分中提取特征,并使用MLP分类器将这些特征进行预测性或非预测性的二元分类。分类完成后,基于频率的报警算法用于警报即将到来的癫痫发作。该方法的性能优于文献报道的其他方法。本研究还显示了HVD方法在癫痫发作预测中的性能。

传统意义上的分类性能是不理想的,因为许多不同的因素影响不同患者的预测趋势。然而,在支持报警算法的情况下,可以做出正确的癫痫预测。这表明单一分类器可能无法处理癫痫预测问题的内在复杂性,但一个合适的后处理算法可能建立在分类性能的基础上,并提供令人满意的灵敏度和虚警率。

在我们的框架中采用的方法,在癫痫发作预测中获得了卓越的成功,因此,证明了一个可用于未来研究的健壮可靠的癫痫发作预警系统的潜在基础。在选定的儿科患者数据集上,所提出的一组方法已经证明了有前途的性能。由于这些发现,下一个合乎逻辑的步骤被认为是应用和评估方法的其他患者组可能更多样化的特征。

在未来的工作中,需要对不同的分类器进行测试,以得出更确定的结论。为了进一步证明HVD在从脑电图信号预测癫痫发作的背景下的适用性,还需要测试其他信号分解技术,并对这些方法进行性能比较。

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值