根据世界卫生组织的数据,癫痫是一种神经系统疾病,影响着大约5000万人。虽然脑电图(EEG)在癫痫患者的大脑活动监测和癫痫诊断中发挥着重要作用,但需要专家对所有脑电图记录进行分析,以检测癫痫活动。这种方法显然是耗时和繁琐的,及时和准确的癫痫诊断对启动抗癫痫药物治疗至关重要,并随后降低未来癫痫发作和癫痫相关并发症的风险。在本研究中,基于原始脑电图信号的卷积神经网络(CNN)代替人工特征提取,用于区分癫痫发作期、前期段和间期段。我们比较了基于颅内Freiburg和头皮CHB-MIT数据库的时频域信号在癫痫信号检测中的表现,以探索这些参数的潜力。为了探索该方法的可行性,我们进行了三种类型的实验,包括两个二元分类问题(间期与前期和间期与发作期)和一个三级问题(间期与前期与发作期)。使用Freiburg数据库中的频域信号,三种实验的平均准确率分别为96.7、95.4和92.3%,而CHB-MIT数据库中的平均检测准确率分别为95.6、97.5和93%。利用Freiburg数据库中的时域信号,三种实验的平均准确率分别为91.1、83.8和85.1%,而CHB-MIT数据库中的信号检测准确率分别为59.5、62.3和47.9%。基于这些结果,利用频域信号有效地检测了这三种情况。然而,使用时域信号作为输入样本对这三种病例的有效识别仅对部分患者实现。总体而言,频域信号的分类精度明显高于时域信号。此外,频域信号在CNN应用中比时域信号具有更大的潜力。
数据集
颅内Freiburg和头皮CHB-MIT数据库
Time and Frequency Domain Signals
在本研究中,我们使用时域或频域信号作为输入进行分类。频域是一个描述信号频率特征的坐标系。频谱图反映了信号的频率和幅值之间的关系,经常被用来分析信号的特征(Wen and Zhang, 2017)。对于每个通道,我们首先使用快速傅立叶变换(FFT)方法将时域信号转换为频域信号(Rasekhi et al., 2013)。
图1A显示了Freiburg数据库中患者3的时域通道的间期、前期和发作期记录。脑电图信号本质上是明显的非线性和非平稳的,而信号是高度复杂的,视觉解释信号是困难的(Acharya et al., 2017)。图1B显示了FFT应用于图1A所示的间音、前音和中音录音所产生的频域信号。x轴表示频率,y轴表示振幅。
在某些频率下,在发作期、发作前和发作间期信号之间观察到显著的变化,这些特征适合分类。相比之下,其他一些频率的振幅很难区分,这些封闭的特征是无效的。分类器需要许多有效的特性。与时域信号相比,频域信号在脑电图数据中更为明显(Ren and Wu, 2014)。
CNN
使用cnn进行大规模成像和视频识别已经非常成功(Sermanet et al., 2013;Simonyan和Zisserman, 2014a),因为建立了大型公共图像存储库,如ImageNet (Deng等人,2009)和高性能计算系统,如大规模分布式集群(Dean等人,2012;Simonyan和Zisserman, 2014b)。
最近,一些研究开始将cnn应用于EEG信号(Ullah et al., 2018),使用cnn进行癫痫预测的研究兴趣增加了,可能是因为这些方法已经被广泛使用,因此在研究社区中得到了更好的建立和更熟悉。
CNN包含一个输入层和一个输出层,以及多个隐藏层。CNN的隐藏层通常由卷积层、池化层和完全连接层组成。卷积层对输入进行卷积运算,将结果传递给下一层。卷积模拟了单个神经元对视觉刺激的反应。卷积网络可以包括局部或全局池层,将一层神经元簇的输出合并到下一层的单个神经元中。平均池化使用前一层中每个神经元簇的平均值。全连通层将一层中的每个神经元连接到另一层中的每个神经元。CNN在原理上与传统的多层感知器神经网络相同。
与传统的分类器相比,cnn在分析高维数据方面具有明显的优势。cnn采用了一种参数共享方案,在卷积层中用于控制和减少参数数量。池化层的设计是为了逐步减少表示的空间大小和网络中参数和计算的数量&#