写在前面
之前已经花了很长时间配置了Anaconda+Cuda+Cudnn,但由于遇到了以下问题需要全部重新安装,因此记录以下过程,希望没有下次了:/。
- Anaconda版本较低,无法安装新的包。
- RTX30系列的显卡不支持Cuda11以下的版本!!!!(这个是关键原因)
Anaconda的卸载与重装
彻底卸载Anaconda
- 点击Anaconda文件夹中的uninstall进行卸载
- 在我的电脑中搜索conda、anaconda,等待系统搜索完成后将相关所有文件删除。
- 可以看到,卸载完成。
我一开始找的教程是下面这两条指令,应该是能卸载的更干净。
在 Anaconda Prompt,输入
conda install anaconda-clean #这一步会产生一个备份。默认位置在:C:\Users\xxx\.anaconda_backup
装好后,输入anaconda-clean --yes #省去输入 y 的步骤,省事
但是,在这一过程中,我遇到了一直在
Solving environment: \
的问题
决定运行下面这行,清除所有东西,更新所有东西,过程比较慢。
conda clean --packages && conda clean --all && conda update --all
结果还是失败了,就放弃了,改用上面的方法。
Anaconda的安装
Anaconda的版本选择,我看网上都是安装最新版,或者低一点的。
下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
- 点击安装包。
- 这里,网上教程选两个都有,我选择了All Users。
- 可以改到D盘,也可以选择默认的。
- 第一个是加入环境变量(旧版本是可选的,可以选上,不用重新添加。但是新版本不可选,需要后面手动配置),第二个是默认使用 Python 3.9,勾选,点击“Install”。
- 最后Finish即可。
- 手动配置环境变量。
- 打开“此电脑”,右键选择“属性”,随后在打开的页面点击“高级系统设置”,点击环境变量。
- 找到系统变量里面的Path,点击“编辑”。
- 添加这三个文件位置(找到自己安装的Anaconda目录)
- 一路按确定!
- 配置环境变量和检验Anaconda环境变量是否配置成功都可参考:
- https://blog.csdn.net/weixin_42855758/article/details/122795125?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166735862016782427489421%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=166735862016782427489421&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allbaidu_landing_v2~default-4-122795125-null-null.142v62pc_new_rank,201v3control_2,213v1t3_control1&utm_term=anaconda%20%E5%AE%89%E8%A3%85&spm=1018.2226.3001.4187
- 修改镜像源
- https://blog.csdn.net/qq_52689354/article/details/126600159?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EYuanLiJiHua%7EPosition-1-126600159-blog-125690398.pc_relevant_3mothn_strategy_recovery&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EYuanLiJiHua%7EPosition-1-126600159-blog-125690398.pc_relevant_3mothn_strategy_recovery&utm_relevant_index=1
- 新建环境
- 打开anaconda prompt
- 命令行输入:conda create --name pytorch_gpu python=3.8,python_gpu为anaconda下虚拟环境名称
- 如果要启用创建的环境,输入指令:conda activate pytorch_gpu
- 关闭该环境的话,输入指令:conda deactivate
CUDA
为啥要安装CUDA?
答:因为CUDA是NVIDIA用于自家GPU的并行计算框架,只能在NVIDIA的GPU上运行。深度学习神经网络存在着大量的并行计算,所以要用这个CUDA框架在GPU上进行运算。顺便cuDNN全称 CUDA Deep Neural Network library,是NVIDIA针对深度神经网络的加速库,起辅助作用。
卸载CUDA
- 打开控制面板-卸载程序
- 留下:NVIDIA的图形驱动程序、NVIDIA Physx系统软件、NVIDIA GeForce Experience,其他的卸载。
- 这样就好了。
- 可以检查一下是否卸载完成,如下则卸载完毕。
安装CUDA
安装CUDA前,如果你有找好已经要跑的项目,建议直接安装跟项目相同环境的CUDA版本。如果没有,可以安装Pytorch兼容的版本。这次我安装了两个版本的CUDA,所以也有放安装多版本的CUDA地址。不要盲目安装版本。
下载链接:https://developer.nvidia.com/cuda-toolkit-archive
-
查看自己电脑配置匹配的CUDA版本
- 通过win+r,输入cmd打开终端窗口,输入命令nvidia-smi可以看到cuda版本号,比如我的是11.7,即安装的cuda版本不能超过11.7
- 在该网址可查看对应的CUDA版本号:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions
- 通过win+r,输入cmd打开终端窗口,输入命令nvidia-smi可以看到cuda版本号,比如我的是11.7,即安装的cuda版本不能超过11.7
-
选择相应版本下载
- Cuda官网的可下载版本:
- Pytorch官网的可下载版本:
- 这里要注意,不要下载比Pytorch提供的更高版本,不然不适配!
- 因为Pytorch支持11.6,我就下载CUDA 11.6版本的
- Cuda官网的可下载版本:
-
点击下载的版本,选择download
-
点击安装包,安装。
- 我用的是默认路径,没有修改。
- 自定义安装
- 新版本小于等于当前版本,则不勾选
- 为了方便CUDA版本的管理,可以专门新建一个CUDA文件夹,在里面新建对应版本号的文件夹。
- 在CUDA11.6里又新建两个文件夹,CUDA Documentation和Development选相同的文件位置,Samples选不同的文件位置。
-
-
检查CUDA是否安装成功
cuDNN
cuda可以看做是一个工作台,而cudnn是基于cuda的深度学习加速库,想要在cuda上深度学习加速必须安装cudnn。
下载地址:https://developer.nvidia.com/rdp/cudnn-archive
- 注册,选择相应版本下载。
- 将压缩包的三个文件复制到刚刚新建的CUDA的有相应文件夹里面。
- 配置环境变量。
- 在系统变量一共新建五条:
- 【CUDA_SDK_PATH_V11_6】C:\CUDA\CUDA11.6\CUDA2
- 【CUDA_BIN_PATH_V11_6】%CUDA_PATH_V11_6%\bin
- 【CUDA_LIB_PATH_V11_6】%CUDA_PATH_V11_6%\lib\x64
- 【CUDA_SDK_BIN_PATH_V11_6】%CUDA_SDK_PATH_V11_6%\bin\win64
- 【CUDA_SDK_LIB_PATH_V11_6】%CUDA_SDK_PATH_V11_6%\common\lib\x64
- 在Path环境一共新建8条:
- %CUDA_LIB_PATH_V11_6%
- %CUDA_BIN_PATH_V11_6%
- %CUDA_SDK_BIN_PATH_V11_6%
- %CUDA_SDK_LIB_PATH_V11_6%
- C:\CUDA\CUDA11.6\CUDA1\lib\x64
- C:\CUDA\CUDA11.6\CUDA1\bin
- C:\CUDA\CUDA11.6\CUDA2\common\lib\x64
- C:\CUDA\CUDA11.6\CUDA2\bin\win64
- 加入版本号是因为我同时安装了两个版本的CUDA,用来区分不同版本的环境变量。
- 配置变量和验证是否下载成功,详细请参考:https://blog.csdn.net/L1778586311/article/details/112425993
- 在系统变量一共新建五条:
多版本CUDA下载
- 跟上述步骤相似,唯一不同的是在自定义安装中只选择CUDA即可!!
- 环境变量一式两份。详细请参考:https://blog.csdn.net/L1778586311/article/details/112398545
Pytorch下载
前面我下载了CUDN11.6版本的,因为项目需要,我又下载了CUDN11.0版本的和对应的cuDNN。所以,这里演示的是CUDN11.0,torch=1.7.1的下载。
- Win+R启动cmd,依次输入命令:
conda create –n pytorch-gpu python=3.7
activate pytorch-gpu
activate pytorch-gpu
# CUDA 11.0 pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
- 依赖库的安装:
- scipy==1.7.1
- numpy==1.21.2
- matplotlib==3.4.3
- opencv_python==4.5.3.56
- torch==1.7.1
- torchvision==0.8.2
- tqdm==4.62.2
- Pillow==8.3.2
- h5py==2.10.0
- 可以将上述内容复制到记事本中,命名为requirements.txt文件。
- 运行
pip install -r C:\XXXX(你存放的地址)\requirements.txt
一起安装
- 全部安装完成之后重启电脑
在Pycharm中为项目添加现有的虚拟环境
4的文件位置,envs是虚拟环境所在的文件夹,初次安装应该在C:\Users\XX(你的用户名)\.conda\envs
中,也可自行将虚拟环境位置更换到D盘。