使用lightGBM进行Python机器学习模型训练和预测

120 篇文章 23 订阅 ¥59.90 ¥99.00
本文介绍了如何使用lightGBM库在Python中进行机器学习模型的训练和预测,通过鸢尾花数据集为例,展示从安装lightGBM到模型训练、预测和性能评估的完整流程。
摘要由CSDN通过智能技术生成

使用lightGBM进行Python机器学习模型训练和预测

lightGBM是一个快速、高效且分布式的梯度提升框架,广泛应用于机器学习任务中。本文将介绍如何使用lightGBM库在Python中进行机器学习模型的训练和预测。我们将通过一个示例来演示整个过程,并提供相应的源代码供参考。

首先,我们需要安装lightGBM库。你可以使用以下命令通过pip安装lightGBM:

pip install lightgbm

安装完成后,我们可以开始编写代码。首先,我们需要导入所需的库和模块。除了lightGBM之外,我们还将使用numpy和sklearn库来处理数据和评估模型的性能。

import lightgbm as lgb
import numpy as np
from sklearn import datasets
from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值