基于深度学习卷积神经网络(CNN)的信号调制分类

171 篇文章 ¥59.90 ¥99.00
本文介绍了如何利用深度学习卷积神经网络(CNN)进行信号调制分类,详细阐述了数据集的准备、CNN模型的构建以及模型训练和评估过程,特别提到了在无线通信系统中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度学习卷积神经网络(CNN)的信号调制分类

信号调制是无线通信中的重要环节,它将数字信息转换为适合在无线信道上传输的模拟信号。信号调制的分类可以帮助我们了解和识别不同调制方案的特征,并且在无线通信系统中具有广泛的应用。本文将介绍如何使用深度学习卷积神经网络(CNN)来实现信号调制的分类,并附上相应的Matlab代码。

首先,我们需要准备用于训练和测试的数据集。数据集应包含不同调制方案下的信号样本。每个样本包括信号的IQ数据和其对应的调制类型。IQ数据是指信号的实部和虚部构成的复数序列。我们可以使用Matlab中的通信工具箱生成不同调制方案下的信号,并将其转换为IQ数据。然后,我们可以根据需要设置训练集和测试集的比例。

接下来,我们使用CNN模型来训练和分类信号调制。以下是一个简单的CNN模型示例:

% 设置CNN模型
layers = [
    imageInputLayer([
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值