目标检测 Feature Pyramid Networks for Object Detection(FPN)论文笔记

本文深入解析了Feature Pyramid Networks (FPN)在目标检测中的应用,介绍了FPN的bottom-up pathway、top-down pathway和lateral connections的工作原理,以及如何将FPN应用于RPN和Fast R-CNN,提升小物体检测的性能。
摘要由CSDN通过智能技术生成

目标检测 Feature Pyramid Networks for Object Detection(FPN)论文笔记


原文: Feature Pyramid Networks for Object Detection
作者: Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie
下载地址: https://arxiv.org/abs/1612.03144

1 简介

  • 长久以来,在不同尺度下识别物体一直是计算机视觉一大挑战。传统的解决方法是对一张图像进行缩放,形成图像金字塔,然后从每层分别提取特征,形成对应的特征金字塔(如Figure1(a))。这种方法曾经在深度学习方法之前很受欢迎,但之后逐渐被CNN一系列方法替代。因为CNN网络已经能够自动提取高级特征,并且鲁棒性更强(如Figure1(b)),而且金字塔结构相对而言太耗时间了。
  • 即便如此,CNN系列的检测网络对于小物体还是不够理想,所以还是可以考虑使用金字塔。SSD(Single Shot Detector)对此进行过尝试(如Figure1(c))。**网络的浅层分辨率高,但特征表示较为低级;深层的分辨率低,但有更高级的特征表示。**SSD从每层的特征中进行预测,为了避免计算量过大,前面的浅层信息没有使用。但本文表明这些高分率的浅层信息也是很有用的。
  • 作者根据以上提出了FPN(Feature Pyramid Networks)(如Figure1(d))。网络首先通过bottom-up pathway由浅到深提取特征(就是正常的网络结构),再通过top-down pathwaylateral connections生成在每个等级都有丰富语义的特征金字塔。
    image_1bildn4vm17fpe1h1dk4151casc9.png-216kB
  • 过去有一些研究方法采用的是Figure2上半部的结构,即只在top-down pathway的最后一层做预测。而本文的方法在每一层都有预测(Figure2下半部)。
    image_1bilfbp2s113a1ot874uvc5n2m.png-116.2kB

2 FPN介绍

2.1 Bottom-up pathway

  • bottom-up pathway就是平常见到的前向传播网络,从原图开始,一层一层计算特征。作者将一些尺度相同的层称为同一“stage”。下一个stage的分辨率比上一个降低了1倍。在后面的特征金字塔中,只取每个stage的最后一层参与其构成。
  • 由于使用的是Resnet作为主干,作者将其分成5个stage,每个stage最后的conv输出标记为 { C1,C2,C3,C4,C5} 。第一层占用的内存太多,因此只取 { C2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值