FPN(Feature Pyramid Networks for Object Detection)--2017 CVPR解读

最近在研究 A n c h o r   F r e e Anchor \ Free Anchor Free目标检测,涉及到很多细碎的知识,一一了解!道阻且长~~~~~


FPN(Feature Pyramid Networks for Object Detection)–2017 CVPR



1、引言

识别不同尺寸目标一直是目标检测的难点,尤其是小目标!而特征金字塔一直是解决多尺度目标检测的一个重要的点!现在深度学习目标检测的图像/特征金字塔解决思路有下面几种:

在这里插入图片描述
a)图像金字塔。图像下采样等方式形成不同的 s c a l e scale scale,不同的 s c a l e scale scale提取不同尺寸的特征。明显可以看出时间复杂度高!

b)仅采用网络最后一层的特征!如Faster_RCNN,YOLO1(是在最后一层全连接层上操作的)。

c)图像提取特征形成不同尺度的特征图,越往后,特征图越小,语义信息越丰富。那么在网络不同层抽取不同的尺度的特征做检测,这种方式不会增加额外的消耗量。如 S S D SSD SSD,但是 300 ∗ 300 300*300 300300 S S D SSD SSD做检测和回归的第一层特征图为 38 ∗ 38 38*38 3838。这对小目标检测很不利。

d)FPN:特征金字塔网络。顶层的特征通过上采样与低层特征进行融合,每一层都用来做检测与回归。


2、结构

F P N FPN FPN结构主要有三个关键部分:自底向上、自顶向下、横向连接

在这里插入图片描述

自底而上:就是网络训练的前向传播过程,特征图尺寸越来越小,缩放 s t r i d e = 2 stride=2 stride=2。有些层的尺寸不变,我们把这些尺度不变的层定义为一个 s t a g e stage stage。我们选择每个阶段的最后一层输出作为分类和回归参考特征图。 因为每个阶段的最后一层提取的特征应该是最好的。

自顶向下:把高层特征图进行上采样(比如最近邻上采样),然后把该特征横向连接(lateral connections )至前一层特征,因此高层特征得到加强。这样做主要是为了利用底层的定位细节信息。

横向连接:前一层的特征图经过 1 ∗ 1 1 * 1 11的卷积核卷积,作用:改变channels,因为要和后一层上采样的 c h a n n e l s channels channels相同)。连接方式:像素间的加法。重复迭代该过程,直至生成最精细的特征图。得到精细的特征图之后,用 3 ∗ 3 3 * 3 33的卷积核再去卷积已经融合的特征图,目的:消除上采样的混叠效应(混叠效应下面介绍),以生成最后需要的特征图。为了后面的应用能够在所有层级共享分类层,所以固定了 3 ∗ 3 3*3 33卷积后的输出通道为 d d d,论文中取 d = 256 d=256 d=256

混叠效应:在统计、信号处理和相关领域中,混叠是指取样信号被还原成连续信号时产生彼此交叠而失真的现象。当混叠发生时,原始信号无法从取样信号还原。而混叠可能发生在时域上,称做时间混叠,或是发生在频域上,被称作空间混叠。在视觉影像的模拟数字转换或音乐信号领域,混叠都是相当重要的议题。因为在做模拟-数字转换时若取样频率选取不当将造成高频信号和低频信号混叠在一起,因此无法完美地重建出原始的信号。为了避免此情形发生,取样前必须先做滤波的操作。

在视频信号处理过程中,有两种方法可以消除混叠现象:

  1. 直接提高采样频率,但是采样频率不能无限提高;
  2. 在采样频率固定的情况下,可通过低通滤波器消除大于尼奎斯特频率的高频信号,从而消除混叠现象;

所以这边使用一个 3 ∗ 3 3*3 33卷积核来卷积特征图来产生最后的参考特征图。


3、关键思想

C N N CNN CNN网络由浅到深,分辨率越来越粗糙,特征图越来越小,因为池化产生的不同尺寸的特征图。但是越高层,语义信息越丰富。相似的思想利用在FCN的自顶向下连接(这边可以跳层连接哦)。也就是要识别多尺度的目标,利用不同尺度的特征图。

总结来说,FPN = top-down的融合(skip layer) + 在金字塔各层进行prediction。

实验就不说啦,想深入了解的可以调试代码和阅读论文!


4、参考链接

  1. https://blog.csdn.net/qq_17550379/article/details/80375874
  2. http://www.cnblogs.com/alanma/p/6884121.html
  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 特征金字塔网络(Feature Pyramid Networks, FPN)是一种用于目标检测的神经网络架构。它通过在深层特征图上构建金字塔结构来提高空间分辨率,从而更好地检测小目标。FPN具有高效的多尺度特征表示和鲁棒性,在COCO数据集上取得了很好的表现。 ### 回答2: 特征金字塔网络(Feature Pyramid Networks,简称FPN)是一种用于目标检测的深度学习模型。该模型是由FAIR(Facebook AI Research)在2017年提出的,旨在解决单一尺度特征不能有效检测不同大小目标的问题。 传统的目标检测算法通常采用的是滑动窗口法,即在图像上以不同大小和不同位置进行滑动窗口的检测。但是,这种方法对于不同大小的目标可能需要不同的特征区域来进行检测,而使用单一尺度特征可能会导致对小目标的错误检测或漏检。FPN通过利用图像金字塔和多层特征提取,将不同尺度的特征合并起来,从而达到对不同大小目标的有效检测。 FPN主要分为两个部分:上采样路径(Top-Down Pathway)和下采样路径(Bottom-Up Pathway)。下采样路径主要是通过不同层级的卷积神经网络(CNN)来提取特征,每层都采用了非极大值抑制(Non-Maximum Suppression,NMS)方法来选择最具有代表性的特征。上采样路径则主要是将低层特征进行上采样操作,使其与高层特征的尺寸对齐,并与高层特征相加,实现特征融合。 FPN在目标检测中的优势体现在以下几个方面。首先,FPN可以提高模型对小目标的检测能力,同时仍保持对大目标的检测准确度。其次,FPN的特征金字塔结构可以在一次前向传递中完成目标检测,减少了计算时间。最后,FPN对于输入图像的尺寸和分辨率不敏感,可以在不同分辨率的图像上进行目标检测,从而适应多种应用场景。 总之,FPN是一种在目标检测领域中得到广泛应用的模型,其特征金字塔结构能够有效地解决单一尺度特征不足以检测不同大小目标的问题,并在检测准确率和计算效率方面取得了不错的表现。 ### 回答3: 特征金字塔网络是一种用于目标检测的深度学习模型,主要解决的问题是在不同尺度下检测不同大小的物体。在传统的卷积神经网络中,网络的特征图大小会不断减小,因此只能检测较小的物体,对于较大的物体则无法很好地检测。而特征金字塔网络则通过在底部特征图的基础上构建一个金字塔状的上采样结构,使得网络能够在不同尺度下检测不同大小的物体。 具体来说,特征金字塔网络由两个主要部分构成:共享特征提取器和金字塔结构。共享特征提取器是一个常规的卷积神经网络,用于提取输入图像的特征。而金字塔结构包括多个尺度的特征图,通过上采样和融合来获得不同尺度的特征表示。这些特征图之后被输入到后续的目标检测网络中,可以通过这些特征图来检测不同尺度的物体。 特征金字塔网络可以有效地解决目标检测任务中的尺度问题,并且在许多实际应用中表现出了优异的性能。例如,通过使用特征金字塔网络,在COCO数据集上得到的目标检测结果明显优于现有的一些目标检测算法。 总之,特征金字塔网络是一种非常有效的深度学习模型,可以处理目标检测任务中的尺度问题,提高模型在不同大小物体的检测精度。它在实际应用中具有很高的价值和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值